Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
J Colloid Interface Sci ; 672: 236-243, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38838631

RESUMO

This study reports the development of a photocatalytic electrochemical aptasensor for the purpose of detecting chloramphenicol (CAP) antibiotic residues in water by utilizing SYBR Green I (SG) and chemically exfoliated MoS2 (ce-MoS2) as synergistically signal-amplification platforms. The Au nanoparticles (AuNPs) were electrodeposited onto the surface of an indium tin oxide (ITO) electrode. After that, the thiolate-modified cDNA, also known as capture DNA, was combined with the aptamer. Subsequently, photosensitized SG molecules and ce-MoS2 nanomaterial were inserted into the groove of the resultant double-stranded DNA (dsDNA). The activation of the photocatalytic process upon exposure to light resulted in the generation of singlet oxygen. The singlet oxygen effectively split the dsDNA, resulting in significant enhancement in the current of [Fe(CN)6]3-/4-. When the CAP was present, both SG molecules and ce-MoS2 broke away from the dsDNA, which turned off the photosensitization response, leading to significant reduction in the current of [Fe(CN)6]3-/4-. Under the optimal conditions, the aptasensor exhibited a linear relationship between the current of [Fe(CN)6]3-/4- with logarithmic concentrations of CAP from 20 to 1000 nM, with a detection of limit (3σ) of 3.391 nM. The aptasensor also demonstrated good selectivity towards CAP in the presence of interfering antibiotics, such as tetracycline, streptomycin, levofloxacin, ciprofloxacin, and sulfadimethoxine. Additionally, the results obtained from the analysis of natural water samples using the proposed aptasensor were consistent with the findings acquired through the use of a liquid chromatograph-mass spectrometer. Therefore, with its simplicity and high selectivity, this aptasensor can potentially detect alternative antibiotics in environmental water samples by replacing the aptamers based on photosensitization.

2.
Water Res ; 258: 121800, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38796909

RESUMO

Iron (hydr)oxides are abundant in surface environment, and actively participate in the transformation of organic pollutants due to their large specific surface areas and redox activity. This work investigated the transformation of tetracycline (TC) in the presence of three common iron (hydr)oxides, hematite (Hem), goethite (Goe), and ferrihydrite (Fh), under simulated sunlight irradiation. These iron (hydr)oxides exhibited photoactivity and facilitated the transformation of TC with the initial phototransformation rates decreasing in the order of: Hem > Fh > Goe. The linear correlation between TC removal efficiency and the yield of HO• suggests that HO• dominated TC transformation. The HO• was produced by UV-induced decomposition of self-generated H2O2 and surface Fe2+-triggered photo-Fenton reaction. The experimental results indicate that the generation of HO• was controlled by H2O2, while surface Fe2+ was in excess. Sunlight-driven H2O2 production in the presence of the highly crystalline Hem and Goe occurred through a one-step two-electron reduction pathway, while the process was contributed by both O2-induced Fe2+ oxidation and direct reduction of O2 by electrons on the conduction band in the presence of the poorly crystalline Fh. These findings demonstrate that sunlight may significantly accelerate the degradation of organic pollutants in the presence of iron (hydr)oxides.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Luz Solar , Tetraciclina , Peróxido de Hidrogênio/química , Compostos Férricos/química , Tetraciclina/química , Compostos de Ferro/química , Oxirredução , Minerais/química , Poluentes Químicos da Água/química , Ferro/química
3.
J Hazard Mater ; 471: 134307, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678702

RESUMO

This systematic review and meta-analysis investigated studies on formaldehyde (FA) inhalation exposure in indoor environments and related carcinogenic (CR) and non-carcinogenic (HQ) risk. Studies were obtained from Scopus, PubMed, Web of Science, Medline, and Embase databases without time limitation until November 21, 2023. Studies not meeting the criteria of Population, Exposure, Comparator, and Outcomes (PECO) were excluded. The 45 articles included belonged to the 5 types of sites: dwelling environments, educational centers, kindergartens, vehicle cabins, and other indoor environments. A meta-analysis determined the average effect size (ES) between indoor FA concentrations, CR, and HQ values in each type of indoor environment. FA concentrations ranged from 0.01 to 1620 µg/m3. The highest FA concentrations were stated in water pipe cafés and the lowest in residential environments. In more than 90% of the studies uncertain (1.00 ×10-6 1.00 ×10-4) due to FA inhalation exposure was reported and non-carcinogenic risk was stated acceptable. The meta-analysis revealed the highest CR values due to inhalation of indoor FA in high-income countries. As 90% of the time is spent indoors, it is crucial to adopt effective strategies to reduce FA concentrations, especially in kindergartens and schools, with regular monitoring of indoor air quality.


Assuntos
Poluição do Ar em Ambientes Fechados , Formaldeído , Exposição por Inalação , Formaldeído/análise , Formaldeído/toxicidade , Poluição do Ar em Ambientes Fechados/análise , Exposição por Inalação/análise , Medição de Risco , Humanos
4.
Sci Total Environ ; 926: 171861, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518819

RESUMO

The emissions of nitrous oxide (N2O) from agricultural fields are a significant contribution to global warming. Understanding the mechanisms of N2O emissions from agricultural fields is essential for the development of N2O emission mitigation strategies. Currently, there are extensive studies on N2O emissions on the surface of agricultural soils, while studies on N2O fluxes at the interface between the saturated and unsaturated zones (ISU) are limited. Uncertainties exist regarding N2O emissions from the soil-shallow groundwater systems in agricultural fields. In this study, a three-year lysimeter experiment (2019-2020, 2022) was conducted to simulate the soil-shallow groundwater systems under four controlled shallow groundwater depth (SGD) (i.e., SGD = 40, 70, 110, and 150 cm) conditions in North China Plain (NCP). Weekly continuous monitoring of N2O emissions from soil surface, N2O concentration in the shallow groundwater and the upper 10 cm of pores at the ISU, and nitrogen cycling-related parameters in the soil and groundwater was conducted. The results showed that soil surface N2O emissions increased with decreased shallow groundwater depth, and the highest emissions of 96.44 kg ha-1 and 104.32 kg ha-1 were observed at G2 (SGD = 40 cm) in 2020 and 2022. During the observation period of one maize growing season, shallow groundwater acted as a sink for the unsaturated zone when the groundwater depth was 40 cm, 70 cm, and 110 cm. However, when SGD was 150 cm, shallow groundwater became a source for the unsaturated zone. After fertilization, the groundwater in all treatment plots behaved as a sink for the unsaturated zone, and the diffusion intensity decreased with increasing SGD. The results would provide a theoretical basis for cropland water management to reduce N2O emissions.

5.
Chemosphere ; 354: 141682, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508462

RESUMO

Parabens (PBs), a group of widely used synthetic preservatives with potential endocrine disrupting activity, have been detected with increasing frequency in organisms and environmental matrices. This study assessed the hormone interference effects of four typical PBs, namely methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP), in zebrafish and elucidated the probable underlying mechanisms. Transcriptomic and metabolomic analyses showed that the differentially expressed genes and metabolites were associated with the tyrosine metabolism, arachidonate metabolism, and glycerophospholipid metabolism, indicating they were essential precursors of steroid hormone biosynthesis and metabolism. Histopathological analysis revealed impaired gonad development in the zebrafish exposed to PBs, as evidenced by the significantly increased vitellogenin (VTG) and estradiol (E2) levels. Furthermore, molecular dynamics simulation suggested that the four PBs could preferentially activate the zebrafish estrogen receptor, zfERß2, to regulate the downstream pathways. Disruption of the amino acid metabolism and lipid metabolism, and activation of zfERß2 signaling pathway were found to be the key mechanisms for the endocrine disrupting effects of PBs. The hormone interference effects of PBs were apparently dependent on the shared oxybenzene on their structures, with the degree of interference determined largely by the length of their alkyl chains. These findings provide new insights into the endocrine disrupting effects of PBs and could help better assess their risk to human health.


Assuntos
Parabenos , Peixe-Zebra , Animais , Humanos , Parabenos/análise , Peixe-Zebra/genética , Simulação de Dinâmica Molecular , Estradiol , Transcriptoma , Perfilação da Expressão Gênica
6.
Environ Pollut ; 347: 123795, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490524

RESUMO

The potential leaching of heavy metals is a crucial concern for construction materials produced from solidification/stabilization (S/S) treatment of wastes. This study comprehensively evaluated the leaching characteristics of heavy metals from the unfired bricks produced from co-disposal of Pb-Zn mine tailings and municipal solid waste incineration fly ash using batch, sequential, and semi-dynamic leaching tests. The results show that S/S treatment drastically reduced the leachability of heavy metals from the unfired bricks through lowering their distribution in the acid-soluble fraction. The effective diffusion coefficients of heavy metals within unfired bricks were all below 1.55 × 10-13 cm2/s, which is indicative of low mobility in the environment. The release of heavy metals from the unfired bricks was primarily governed by diffusion and dissolution. Slaking treatment of fly ash significantly reduced the leaching of heavy metals from the unfired bricks due to their improved structural integrity and compactness, which minimizes the surface area in the solid matrix accessible by the leaching medium. The leachability indices of heavy metals within the unfired bricks ranged from 13.12 to 18.10, suggesting that they are suitable for "controlled utilization" in specific scenarios. Compared to untreated mine tailings, converting them into unfired bricks could reduce the releases of heavy metals by several to hundreds of folds. These findings demonstrate that S/S can be an effective and sustainable strategy for co-disposal of mining tailings and incineration fly ash to produce construction materials with sound long-term environmental performance.


Assuntos
Metais Pesados , Eliminação de Resíduos , Resíduos Sólidos/análise , Cinza de Carvão/química , Eliminação de Resíduos/métodos , Carbono/química , Incineração , Metais Pesados/análise , Material Particulado
7.
Water Res ; 251: 121124, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237464

RESUMO

Rare earth mining causes severe riverine nitrogen pollution, but its effect on nitrous oxide (N2O) emissions and the associated nitrogen transformation processes remain unclear. Here, we characterized N2O fluxes from China's largest ion-adsorption rare earth mining watershed and elucidated the mechanisms that drove N2O production and consumption using advanced isotope mapping and molecular biology techniques. Compared to the undisturbed river, the mining-affected river exhibited higher N2O fluxes (7.96 ± 10.18 mmol m-2d-1 vs. 2.88 ± 8.27 mmol m-2d-1, P = 0.002), confirming that mining-affected rivers are N2O emission hotspots. Flux variations scaled with high nitrogen supply (resulting from mining activities), and were mainly attributed to changes in water chemistry (i.e., pH, and metal concentrations), sediment property (i.e., particle size), and hydrogeomorphic factors (e.g., river order and slope). Coupled nitrification-denitrification and N2O reduction were the dominant processes controlling the N2O dynamics. Of these, the contribution of incomplete denitrification to N2O production was greater than that of nitrification, especially in the heavily mining-affected reaches. Co-occurrence network analysis identified Thiomonas and Rhodanobacter as the key genus closely associated with N2O production, suggesting their potential roles for denitrification. This is the first study to elucidate N2O emission and influential mechanisms in mining-affected rivers using combined isotopic and molecular techniques. The discovery of this study enhances our understanding of the distinctive processes driving N2O production and consumption in highly anthropogenically disturbed aquatic systems, and also provides the foundation for accurate assessment of N2O emissions from mining-affected rivers on regional and global scales.


Assuntos
Desnitrificação , Rios , Rios/química , Adsorção , Nitrificação , Óxido Nitroso/análise , Nitrogênio/análise
8.
Sci Total Environ ; 914: 169877, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185143

RESUMO

Contaminated mining soils could lead to heavy metal pollution of surrounding farmlands under rainfall conditions. With the aids of sequential extraction, batch leaching, and dynamic leaching experiments, this study was carried out to investigate the characteristics of heavy metals in contaminated mining soils, understand their leaching behavior under different rainfall conditions, and evaluate the potential effects on surrounding farmlands. The results indicated that the concentrations of heavy metals (Cr, Ni, Cu, Zn, As, Cd, and Pb) in the contaminated mining soils were several or even twenty times higher than their corresponding background values, and Cd, Zn, Cu and Pb had considerable proportions (>50 %) in mobile forms. The leaching amounts of heavy metals from the contaminated mining soils had positive correlation with their contents in acid soluble form, and showed strong dependence on rainfall pH conditions. Acid rainfalls (pH = 4.32) can greatly increase the average annual release of Cd, Zn, Cu and Pb from mine soils in the study area, with increments ranging from 72.4 % (Pb) to 85.9 % (Cd) compared to those under alkaline conditions (pH = 7.42). The leaching of heavy metals was well fitted by two-constant, pseudo second-order and parabolic equations, indicating that their multi-layer sorption/desorption behavior on soil surface was dominated by chemical processes and their release was controlled by the diffusion within the soil pore channels. The two-column leaching experiment showed that the metal-rich leachate can lead to obvious increments of heavy metals in non-residual fractions (in particular Cd in acid soluble form) in surrounding farmlands, which would significantly raise the potential ecological risk associated with heavy metals. These findings indicate the importance of contaminated mining soils as a long-term source of heavy metals and the needs for mitigating the releases of toxic elements, especially in areas with heavy acid precipitation.

9.
Chemosphere ; 350: 140995, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128738

RESUMO

The leaching of heavy metals from abandoned mine tailings can pose a severe threat to surrounding areas, especially in the regions influenced by acid rain with high frequency. In this study, the potential risks of heavy metals in the tailings collected from a small-scale abandoned multi-metal mine was assessed, and their leaching behavior and mechanism were investigated by batch, semi-dynamic and in situ leaching experiments under simulated and natural rainfall conditions. The results suggested that Zn, Cu, Pb, and Cd in the tailings could cause high/very high risks. Both batch and semi-dynamic leaching tests consistently confirmed that the leaching of heavy metals (particularly Cd) could lead to serious pollution of the surrounding environment. The leaching rates of heavy metals were pH-dependent and related to their chemical speciations in the mine tailings. The leaching behavior of Cu and Cd was dominated by surface wash-off, Zn was controlled by diffusion initially and then surface wash-off, and the leaching mechanisms of Pb and As varied with the pH conditions. It was estimated that acid rain could greatly elevate the release fluxes of Zn (20.8%), Cu (36.7%), Pb (49.9%) and Cd (35.3%) in the study area. These findings could improve the understanding of the leaching behavior of heavy metals from mine tailings and assist in developing appropriate management strategies.


Assuntos
Chuva Ácida , Metais Pesados , Poluentes do Solo , Cádmio , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise
10.
Environ Pollut ; 337: 122519, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690466

RESUMO

Although alternatives to mercury (Hg) are available in most products and industrial activities, Hg continues to be an ingredient in some products, including fluorescent lamps and electrical and electronic equipment (EEE). In this work, low-cost passive air samplers (PASs) were used to investigate the atmospheric Hg pollution in Zhongshan, a large industrial city and major hub of mercury-added product manufacturing in South China. The GEM concentrations in the atmosphere were measured for two weeks during the summer of 2019 at a total of 144 sites across Zhongshan. Comparison with the results of active sampling confirmed that the PASs yielded accurate and reliable gaseous elemental mercury (GEM) concentrations and were thus well-suited for multi-site field monitoring. The mean GEM concentrations in the areas with mercury-added product manufacturing activities (5.1 ± 0.4 ng m-3) were significantly higher than those in other parts of Zhongshan (1.5 ± 0.4 ng m-3), indicating that local releases, rather than regional transport, were responsible for the atmospheric Hg pollution. Elevated GEM concentrations (up to 11.4 ng m-3) were found in the vicinity of fluorescent lamp and EEE factories and workshops, indicating significant Hg vapor emissions, presumably from the outdated production technologies and non-standard operation by under-trained workers. The Hg emissions from mercury-added product manufacturing were estimated to be 0.06 and 7.8 t yr-1 for Zhongshan and China, respectively, based on the scales of fluorescent lamp and EEE production. The non-carcinogenic health risk of Zhongshan residents from inhalation and ingestion was judged acceptable, whereby the inhalation exposure in Hg-polluted areas exceeded that of dietary ingestion. These findings demonstrate that mercury-added product manufacturing still contributes notably to anthropogenic gaseous Hg releases in the industrial areas with intense mercury-added product manufacturing activities.


Assuntos
Poluentes Atmosféricos , Mercúrio , Humanos , Mercúrio/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Ar , Atmosfera , Gases
11.
J Hazard Mater ; 458: 132043, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453349

RESUMO

Soil microbes, which play crucial roles in maintaining soil functions and restoring degraded lands, are impacted by heavy metal pollution. This study investigated the vertical distribution of bacterial communities along the soil profiles across four types of areas (heavy metal pollution level: tailings heap area > phytoremediation area > natural restoration area > original forest area) in an abandoned polymetallic mining district by 16S rRNA sequencing, and aimed to disentangle the assembly mechanisms and key drivers of the vertical variation in bacterial community structure. Bacterial diversity and composition were found to vary remarkably between the depth layers in all types of areas, with heterogeneous selection dominated the vertical distribution pattern of soil bacterial communities. Pearson correlation analysis and partial Mantel test revealed that soil nutrients mainly shaped the vertical distribution of bacterial microbiota along soil profiles in the original forest and natural restoration areas. Ni, As, and bioavailable As were the key drivers regulating the vertical variation of bacterial assemblages in the phytoremediation area, whereas Pb, pH, soil organic carbon, and available nitrogen were crucial drivers in the tailings heap area. These findings reveal the predominant assembly mechanisms and drivers governing the vertical distribution of soil bacterial microbiota and indicate the efficiency of phytoremediation and ecological restoration on ameliorating edaphic micro-ecosystems in heavy metal-contaminated areas.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Solo/química , Carbono , RNA Ribossômico 16S/genética , Microbiologia do Solo , Poluentes do Solo/metabolismo , Metais Pesados/análise , Bactérias/metabolismo , Biodegradação Ambiental
12.
J Environ Sci (China) ; 133: 152-160, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37451784

RESUMO

Solid fuel use (SFU) is common in most developing countries and would release many hazardous air pollutants posing high risks on human health. The Global Burden of Disease (GBD) study highlighted risks associated with household SFU in Pakistan, however, high uncertainties prevail because of scanty data on SFU and unaccounted energy stacking. This study conducted a field campaign aiming at collecting first-hand data on household energy mix in Pakistan. The first survey was in Punjab and Azad Kashmir, and revealed that stacked energy use was pervasive, especially for cooking. The stacking was found to be much more obvious in SFU households (defined as those using SFU dominantly) compared to those non-SFU. There were significantly substantial differences between Azad Kashmir and Punjab because of distinct resources available and economic conditions. Woody materials comprised up to nearly 70% in Azad Kashmir, but in Punjab, gas was frequently used for cooking. Only investigating primary household energy would probably overestimate main energy types that being used for a longer time but underestimated other supplements, suggesting the preference of multiple-energy surveys in household energy studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Paquistão , Características da Família , Poluentes Atmosféricos/análise , Inquéritos e Questionários , Culinária , Poluição do Ar em Ambientes Fechados/análise
13.
Sci Total Environ ; 901: 165833, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37517721

RESUMO

Sonocatalysis has emerged as a promising technology for addressing environmental pollution issues. However, the efficacy of sonocatalytic processes is primarily hindered by challenges related to the sluggish flow rate of photogenerated electrons. This study presents a novel approach to address this issue by developing an improved Z-scheme NiFe2O4/MXene/Bi2WO6 (NMB) composite that exhibits exceptional sonocatalytic activity for ciprofloxacin (CIP) degradation. In particular, the NiFe2O4/MXene (5 wt%)/Bi2WO6 composite could achieve high CIP (at 10 mg/L) degradation efficiency (97.39 %) after 60 min of ultrasonic irradiation. The exceptional sonocatalytic activity of the composite was attributed to the synergistic interaction of the Z-scheme heterojunction charge transfer route and the electron mediator of Ti3C2-MXene, which enhances light collection capacity, separates photogenerated carriers efficiently, and improves redox activity of the composite. The scavenging experiments reveal that the sonocatalytic degradation of CIP was driven by holes (h+), hydroxyl radicals (•OH), and superoxide anion radicals (•O2-), with the former playing a dominant role. The results of reuse experiments demonstrate the outstanding sonocatalytic stability of the catalyst, as well as its uncomplicated recovery. The developed NMB Z-scheme composite shows promise for sonocatalytic treatment of antibiotics in industrial wastewaters, particularly those with high turbidity and/or low transparency. The findings also open up avenues for developing efficient and cost-effective sonocatalysts with good recyclability and remarkable performance.

14.
Water Res ; 243: 120368, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494743

RESUMO

Mn-modified biochars (BCs) were developed by pre-treatment of feedstock (MBCs) or post-modification of biochar (BCM), for simultaneous adsorption and degradation of a model pollutant, cephalexin. The apparent removal rates of cephalexin in the presence of MBCs (2.49 - 6.39 × 10-2 h-1) and BCM (13.3 × 10-3 h-1) were significantly higher than that in the presence of biochar prepared under similar conditions (4.2 × 10-3 h-1). While the •OH generated from the activation of dissolved O2 by the persistent free radicals (PFRs) and phenolic -OH on BC could cause degradation of cephalexin, its removal was drastically enhanced through direct oxidation by the MnOx and related Mn species on Mn-modified BCs. The removal of cephalexin by MBCs decreased as the solution pH was raised from 5.0 to 9.0, which supports the critical role played by Mn3O4 in its oxidation. Removal of cephalexin in the presence of MBCs and Mn3O4 was enhanced with the introduction of Mn(II) ions, suggesting that the Mn3O4 present on MBCs facilitates the re-oxidation of Mn(II) to highly reactive Mn(III). While MnO2 anchored on BCM also enhanced the cephalexin oxidation, the active sites of BC and MnO2 were partially destroyed during post-modification of BC, compromising the redox cycling of Mn(II)/Mn(III) and the generation of •OH. As a result, the performance of BCM in oxidizing cephalexin was inferior to that of MBCs. These findings shed new light on the development of environmentally benign sorbents capable of simultaneously adsorbing and oxidizing organic pollutants.


Assuntos
Compostos de Manganês , Óxidos , Adsorção , Oxirredução , Carvão Vegetal
15.
Sci Total Environ ; 899: 165726, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37495153

RESUMO

Chromium (Cr) is released into the environment through anthropogenic activities and has gained significant attention in the recent decade as environmental pollution. Its contamination has adverse effects on human health and the environment e.g. decreases soil fertility, alters microbial activity, and reduces plant growth. It can occur in different oxidation states, with Cr(VI) being the most toxic form. Cr contamination is a significant environmental and health issue, and phytoremediation offers a promising technology for remediating Cr-contaminated soils. Globally, over 400 hyperaccumulator plant species from 45 families have been identified which have the potential to remediate Cr-contaminated soils through phytoremediation. Phytoremediation can be achieved through various mechanisms, such as phytoextraction, phytovolatilization, phytodegradation, phytostabilization, phytostimulation, and rhizofiltration. Understanding the sources and impacts of Cr contamination, as well as the factors affecting Cr uptake in plants and remediation techniques such as phytoremediation and mechanisms behind it, is crucial for the development of effective phytoremediation strategies. Overall, phytoremediation offers a cost-effective and sustainable solution to the problem of Cr pollution. Further research is needed to identify plant species that are more efficient at accumulating Cr and to optimize phytoremediation methods for specific environmental conditions. With continued research and development, phytoremediation has the potential to become a widely adopted technique for the remediation of heavy metal-contaminated soils.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Cromo/metabolismo , Biodegradação Ambiental , Metais Pesados/metabolismo , Plantas/metabolismo , Poluentes do Solo/análise , Solo
16.
Chemosphere ; 335: 139148, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290519

RESUMO

The quality of farmland soils on the Tibetan Plateau is important because of the region's ecological vulnerability and their close link with local food security. Investigation on the pollution status of heavy metal (loid)s (HMs) in the farmlands of Lhasa and Nyingchi on the Tibetan Plateau, China revealed that Cu, As, Cd, Tl, and Pb were apparently enriched, with the soil parent materials being the primary sources of the soil HMs. Overall, the farmlands in Lhasa had higher contents of HMs compared to those in Nyingchi, which could be attributed to the fact that the former were mainly developed on river terraces while the latter were mainly developed on the alluvial fans in mountainous areas. As displayed the most apparent enrichment, with the average contents in the vegetable field soils and grain field soils of Lhasa being 2.5 and 2.2 times higher compared to those of Nyingchi. The soils of vegetable fields were more heavily polluted than those of grain fields, probably due to the more intensive input of agrochemicals, particularly the use of commercial organic fertilizers. The overall ecological risk of the HMs in the Tibetan farmlands was low, while Cd posed medium ecological risk. Results of health risk assessment show that ingestion of the vegetable field soils could pose elevated health risk, with children facing greater risk than adults. Among all the HMs targeted, Cd had relatively high bioavailability of up to 36.2% and 24.9% in the vegetable field soils of Lhasa and Nyingchi, respectively. Cd also showed the most significant ecological and human health risk. Thus, attention should be paid to minimize further anthropogenic input of Cd to the farmland soils on the Tibetan Plateau.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Solo/química , Fazendas , Tibet , Cádmio , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , China , Verduras , Medição de Risco
17.
Environ Geochem Health ; 45(8): 6287-6303, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37289258

RESUMO

Potentially toxic elements from geothermal springs can cause significant pollution of the surrounding environment and pose potential risk to the ecosystem. The fate of potentially toxic elements in the water-soil-plant system in the Yangbajain geothermal field on the Tibetan Plateau, China was investigated to assess their impact on the eco-environment. The concentrations of Be, F, As, and Tl were highly elevated in the headwaters of the Yangbajain geothermal springs, and their concentrations in the local surface water impacted by the geothermal springs reached 8.1 µg/L (Be), 23.9 mg/L (F), 3.83 mg/L (As), and 8.4 µg/L (Tl), respectively, far exceeding the corresponding thresholds for surface and drinking water. The absence of As-Fe co-precipitation, undersaturated F-, and weak adsorption on minerals at high geothermal spring pH may be responsible for the As- and F-rich drainage, which caused pollution of local river. As concentrations in the leaves of Orinus thoroldii (Stapf ex Hemsl.) Bor were up to 42.7 µg/g (dry weight basis), which is an order of magnitude higher than the allowable limit in animal feeds. The locally farmed yaks are exposed to the excessive amount of F and As with high exposure risk through water-drinking and grass-feeding.


Assuntos
Água Potável , Fontes Termais , Ecossistema , China , Poluição Ambiental , Monitoramento Ambiental
18.
Environ Sci Technol ; 57(46): 18183-18192, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37150969

RESUMO

Household air pollution associated with solid fuel use is a long-standing public concern. The global population mainly using solid fuels for cooking remains large. Besides cooking, large amounts of coal and biomass fuels are burned for space heating during cold seasons in many regions. In this study, a wintertime multiple-region field campaign was carried out in north China to evaluate indoor PM2.5 variations. With hourly resolved data from ∼1600 households, key influencing factors of indoor PM2.5 were identified from a machine learning approach, and a random forest regression (RFR) model was further developed to quantitatively assess the impacts of household energy transition on indoor PM2.5. The indoor PM2.5 concentration averaged at 120 µg/m3 but ranged from 16 to ∼400 µg/m3. Indoor PM2.5 was ∼60% lower in families using clean heating approaches compared to those burning traditional coal or biomass fuels. The RFR model had a good performance (R2 = 0.85), and the interpretation was consistent with the field observation. A transition to clean coals or biomass pellets can reduce indoor PM2.5 by 20%, and further switching to clean modern energies would reduce it an additional 30%, suggesting many significant benefits in promoting clean transitions in household heating activities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental , China , População Rural , Culinária , Carvão Mineral
19.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175115

RESUMO

Organic dyes play vital roles in the textile industry, while the discharge of organic dye wastewater in the production and utilization of dyes has caused significant damage to the aquatic ecosystem. This review aims to summarize the mechanisms of photocatalysis, sonocatalysis, and sonophotocatalysis in the treatment of organic dye wastewater and the recent advances in catalyst development, with a focus on the synergistic effect of ultrasound and light in the catalytic degradation of organic dyes. The performance of TiO2-based catalysts for organic dye degradation in photocatalytic, sonocatalytic, and sonophotocatalytic systems is compared. With significant synergistic effect of ultrasound and light, sonophotocatalysis generally performs much better than sonocatalysis or photocatalysis alone in pollutant degradation, yet it has a much higher energy requirement. Future research directions are proposed to expand the fundamental knowledge on the sonophotocatalysis process and to enhance its practical application in degrading organic dyes in wastewater.

20.
Environ Sci Technol ; 57(23): 8467-8475, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37256786

RESUMO

Residential emissions significantly contribute to air pollution. To address this issue, a clean heating campaign was implemented to replace coal with electricity or natural gas among 13.9 million rural households in northern China. Despite great success, the cost-benefits and environmental equity of this campaign have never been fully investigated. Here, we modeled the environmental and health benefits, as well as the total costs of the campaign, and analyzed the inequality and inequity. We found that even though the campaign decreased only 1.1% of the total energy consumption, PM2.5 emissions and PM2.5 exposure experienced 20% and 36% reduction, respectively, revealing the amplification effects along the causal pathway. Furthermore, the number of premature deaths attributable to residential emissions reduced by 32%, suggesting that the campaign was highly beneficial. Governments and residents shared the cost of 2,520 RMB/household. However, the benefits and the costs were unevenly distributed, as the residents in mountainous areas were not only less benefited from the campaign but also paid more because of the higher costs, resulting in a notably lower cost-effectiveness. Moreover, villages in less developed areas tended to choose natural gas with a lower initial investment but a higher total cost (2,720 RMB/household) over electricity (2,190 RMB/household). With targeted investment and subsidies in less developed areas and the promotion of electricity and other less expensive alternatives, the multidevelopment goals of improved air quality, reduced health impacts, and reduced inequity in future clean heating interventions could be achieved.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Análise Custo-Benefício , Material Particulado/análise , Calefação , Gás Natural , Poluição do Ar/análise , China , Poluentes Atmosféricos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA