RESUMO
Background: Microangiogenesis and lymphangiogenesis are essential for tumor growth in the tumor microenvironment, contributing to tumor invasion and metastasis. Limited literature exists on these processes in esophageal squamous cell carcinoma (ESCC). Therefore, the purpose of this study is to explore the impacts of microangiogenesis and lymphangiogenesis on the occurrence, progression, and prognosis assessment of ESCC. Methods: Surgical specimens and paraffin-embedded human tissues were procured from ESCC patients, encompassing 100 ESCC tissues and 100 cancer-adjacent normal (CAN) tissues. CD34 and D2-40 were utilized as markers for microvessel endothelial cells and lymphatic vessel endothelial cells, respectively. Microvascular density (MVD) and lymphatic vessel density (LVD) were evaluated through immunohistochemical quantification. Results: We found that tumor tissues in ESCC patients had significantly higher MVD and LVD than cancer-adjacent normal (CAN) tissues. High MVD and LVD were associated with lymph node metastasis and advanced tumor clinical stages. Additionally, both high MVD and high LVD were strongly linked to poorer prognosis among cancer patients. Furthermore, a positive correlation was found between high MVD and high LVD (p < 0.05). The presence of these markers individually indicated a worse prognosis, with their combined assessment showcasing enhanced prognostic value. Conclusions: Overall, the increased MVD and LVD indicates higher invasion and metastasis of ESCC, closely correlating with unfavorablefor poor prognosis of ESCC patients.
Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Vasos Linfáticos , Densidade Microvascular , Humanos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/irrigação sanguínea , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Vasos Linfáticos/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/irrigação sanguínea , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/irrigação sanguínea , Metástase Linfática/patologia , Linfangiogênese/fisiologia , Idoso , Neovascularização Patológica/patologia , Microvasos/patologia , Antígenos CD34/metabolismo , Imuno-HistoquímicaRESUMO
Existing deep foundation pit support structures are commonly composed of external earth-retaining structures, internal horizontal bracings, and vertical columns. A closed bracing system, often formed by a horizontal support through a bracket board, frequently impedes vertical excavation and soil removal operations in the foundation pit, and the processes of assembly and dismantling are complex and time-consuming. This study presents a combined support system and construction method consisting of cast-in-place piles and diagonal steel lattice braces. For sloped excavation, diagonal braces were constructed by slotting through the reserved soil, allowing the use of a single layer of support within the excavation depth. This approach significantly optimizes the construction process, reducing both project duration and overall cost. The field monitoring results indicated that the support method effectively controlled the lateral displacement of the pile bodies. Field monitoring results demonstrated that the proposed support system effectively controlled the lateral displacement of the pile bodies. The adoption of a support-first, excavation-second approach significantly controlled the settlement of the ground surface around the foundation pit, thereby preventing excessive increments in the axial force of the supports due to the large longitudinal depth excavation. The calculation results of the three-dimensional finite element model for foundation pit excavation and support indicate that the proposed support method results in a decreasing ratio of the maximum lateral deformation depth of the pile body, denoted as δh-m, to the excavation depth He as the excavation depth increases. This implied that the displacement of the pile body was strictly controlled. When the depth of the foundation pit excavation exceeded 10 m, the maximum lateral deformation occurred below 10 m along the pile shaft. The diagonal steel lattice braces transferred the load to the top of the cast-in-place piles at the bottom of the pit, where the stress concentration occurred. During construction, special attention must be paid to the strength of the connection between the pile top and the connecting beams.
RESUMO
PURPOSE: To evaluate the relationship of cochlear implant-related factors with quality of life (QOL) outcomes in pediatric cochlear implantation (CI) recipients. METHOD: In this cross-sectional study, data from 146 children who received CI before 7 years of age were collected. QOL was measured using the Children using Hearing Implants Quality of Life (CuHI-QoL) questionnaire. Auditory and language abilities were measured using categories of auditory performance II(CAP-II) scale and speech intelligibility rating (SIR) scale. The reliability and validity of the CuHI-QOL scale were tested using internal consistency tests and correlation analysis, respectively. Bivariate correlations were used to compare CuHI-QOL scores and educational placements to cochlear implant-related factors. QOL scores were further compared using ANOVA in different groups based on age at CI with different durations of implant use. RESULTS: The mean total CuHI-QOL scores was 60.13 (SD 8.97). The Cronbach's alpha of overall CuHI-QOL scale was 0.820. The CuHI-QOL total score was strongly to moderately correlated with CAP score (r = 0.542), SIR score (r = 0.545), duration of implant use (r = 0.403), and educational placement (r = 0.478). ANOVA showed the CuHI-QOL scores after 5 years post-CI were higher than those less than 2 years post-CI in children implanted ≤ 3 years of age. CONCLUSIONS: Good QOL could be obtained for children with CI and were significantly associated with young age at implantation, good auditory and speech abilities, speech rehabilitation training pre-CI, long duration of cochlear implant use, and mainstream educational placement.
RESUMO
In this study, we prepared a strontium ferrite titanate (STF) thin film using a sol-gel process to insulate resistive random-access memory (RRAM) applications. Compared to the typical strontium titanate (STO) RRAM, the improvement in the resistive switching characteristics in STF RRAM is obvious. The Al/STO/ITO/Glass RRAM set/reset voltages of -1.4 V/+3.3 V and the Al/STF/ITO/Glass RRAM set/reset voltages of -0.45 V/+1.55 V presented a memory window larger than 103, a low operating voltage and device stability of more than 104 s. In this study, the influence of Fe on the conducting paths and the bipolar resistive switching properties of Al/STF/ITO/Glass RRAM devices is investigated.
RESUMO
Posttraumatic stress disorder (PTSD) is associated with glutamatergic neuron hyperactivation in the basolateral amygdala (BLA) brain area, while GABAergic interneurons in the BLA modulate glutamatergic neuron excitability. Studies have shown that propofol exerts its effects through potentiation of the inhibitory neurotransmitter γ-aminobutyric acid. The neuronal mechanism by which propofol anesthesia modulates fear memory is currently unknown. Here, we used optogenetics and chemogenetics to suppress glutamatergic neurons or activate GABAergic interneurons in the BLA to assess alterations in neuronal excitation-inhibition balance and investigate fear memory. The excitability of glutamatergic neurons in the BLA was significantly reduced by the suppression of glutamatergic neurons or activation of GABAergic interneurons, while propofol-mediated enhancement of fear memory was attenuated. We suggest that propofol anesthesia could reduce the excitability of GABAergic neurons through activation of GABAA receptors, subsequently increasing the excitability of glutamatergic neurons in the mice BLA; the effect of propofol on enhancing mice fear memory might be mediated by strengthening glutamatergic neuronal excitability and decreasing the excitability of GABAergic neurons in the BLA; neuronal excitation-inhibition imbalance in the BLA might be important in mediating the enhancement of fear memory induced by propofol.
Assuntos
Complexo Nuclear Basolateral da Amígdala , Medo , Neurônios GABAérgicos , Memória , Propofol , Propofol/farmacologia , Animais , Medo/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/fisiologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Memória/efeitos dos fármacos , Camundongos , Masculino , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ácido Glutâmico/metabolismo , OptogenéticaRESUMO
Alcoholic liver injury stands as a predominant pathogenic contributor to the global burden of liver diseases, with alcohol consumption serving as a significant determinant of worldwide morbidity and mortality. Given that liver-targeted therapy for mitigating alcoholic liver injury remains to be a major clinical challenge due to the poor specificity and instability associated with single targeting modification in actively targeted nanomedicine systems, bifunctional targeting modification may serve as a more promising strategy. Here, galactose-functionalized hyaluronic acid (Gal-HA) coated cationic solid lipid nanoparticles carrying silybin (Gal-HA/SIL-SLNPs) featuring dual-targeting hyaluronic acid (HA) and galactose (Gal) moieties, enabled specific liver surface targeting of asialoglycoprotein receptor (ASGPR) and cluster of differentiation 44 (CD44) proteins to enhance silybin uptake, while simultaneously ameliorating the deficiencies of positively charged lipid nanoparticles as drug carriers and preserving their stability in the bloodstream. Based on the findings, Gal-HA/SIL-SLNPs with excellent biocompatibility demonstrated improved cellular internalization and liver distribution, while also displaying ideal curative properties in a mouse model of alcohol-induced liver injury without causing damage to other organs. This work suggests that Gal-HA/SIL-SLNPs with dual modification may represent an encouraging approach for developing more effective liver targeted nano-drug delivery systems to achieve accurate medication for alcoholic liver injury.
RESUMO
AIMS: Type 2 diabetes mellitus (T2DM) is related to an increased risk of postoperative cognitive dysfunction (POCD), which may be caused by neuronal hyperexcitability. Astrocyte glutamate transporter 1 (GLT-1) plays a crucial role in regulating neuron excitability. We investigated if T2DM would magnify the increased neuronal excitability induced by anesthesia/surgery (A/S) and lead to POCD in young adult mice, and if so, determined whether these effects were associated with GLT-1 expression. METHODS: T2DM model was induced by high fat diet (HFD) and injecting STZ. Then, we evaluated the spatial learning and memory of T2DM mice after A/S with the novel object recognition test (NORT) and object location test (OLT). Western blotting and immunofluorescence were used to analyze the expression levels of GLT-1 and neuronal excitability. Oxidative stress reaction and neuronal apoptosis were detected with SOD2 expression, MMP level, and Tunel staining. Hippocampal functional synaptic plasticity was assessed with long-term potentiation (LTP). In the intervention study, we overexpressed hippocampal astrocyte GLT-1 in GFAP-Cre mice. Besides, AAV-Camkllα-hM4Di-mCherry was injected to inhibit neuronal hyperexcitability in CA1 region. RESULTS: Our study found T2DM but not A/S reduced GLT-1 expression in hippocampal astrocytes. Interestingly, GLT-1 deficiency alone couldn't lead to cognitive decline, but the downregulation of GLT-1 in T2DM mice obviously enhanced increased hippocampal glutamatergic neuron excitability induced by A/S. The hyperexcitability caused neuronal apoptosis and cognitive impairment. Overexpression of GLT-1 rescued postoperative cognitive dysfunction, glutamatergic neuron hyperexcitability, oxidative stress reaction, and apoptosis in hippocampus. Moreover, chemogenetic inhibition of hippocampal glutamatergic neurons reduced oxidative stress and apoptosis and alleviated postoperative cognitive dysfunction. CONCLUSIONS: These findings suggest that the adult mice with type 2 diabetes are at an increased risk of developing POCD, perhaps due to the downregulation of GLT-1 in hippocampal astrocytes, which enhances increased glutamatergic neuron excitability induced by A/S and leads to oxidative stress reaction, and neuronal apoptosis.
Assuntos
Astrócitos , Diabetes Mellitus Tipo 2 , Regulação para Baixo , Transportador 2 de Aminoácido Excitatório , Hipocampo , Camundongos Endogâmicos C57BL , Complicações Cognitivas Pós-Operatórias , Animais , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/biossíntese , Transportador 2 de Aminoácido Excitatório/genética , Astrócitos/metabolismo , Complicações Cognitivas Pós-Operatórias/etiologia , Complicações Cognitivas Pós-Operatórias/metabolismo , Hipocampo/metabolismo , Camundongos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos TransgênicosRESUMO
PURPOSE: Infection by carbapenem-resistant Klebsiella pneumoniae (CRKP) has high mortality. There is no clear optimal therapeutic choice for pneumonia caused by CRKP. The aim of this study was to compare the clinical outcomes and safety of the standard doses of polymyxin B-based regimens vs tigecycline-based regimens and to identify risk factors for mortality. METHODS: This retrospective cohort study included patients with pneumonia caused by CRKP between January 1, 2020 and December 31, 2022. The primary outcomes were 7-day bacterial eradication rate and 14- and 28-day all-cause mortality. The secondary outcome was incidence of acute kidney injury. RESULTS: Seventy-three patients were included in this study, 29 in the polymyxin B-based combination therapy group and 44 in tigecycline-based combination therapy group. There were no significant differences between the two groups in terms of the 7-day bacterial eradication rate (31.03% vs 20.45%, p = 0.409), the 14-day all-cause mortality (37.93% vs 22.73%, p = 0.160), and the incidence of acute kidney injury (14.29% vs 6.82%, p = 0.526). The 28-day all-cause mortality in the polymyxin B-based therapy group was higher than in the tigecycline-based group (75.86% vs 45.45%, p = 0.010). Binary logistic regression analysis revealed that male and previous use of carbapenems were independent factors associated with 28-day all-cause mortality for patients treated with polymyxin B (p < 0.05). CONCLUSIONS: Polymyxin B-based combination therapy at the standard dose should be used with caution for patients with CRKP-induced pneumonia, especially for men who used carbapenems prior to CRKP detection.
Assuntos
Antibacterianos , Quimioterapia Combinada , Infecções por Klebsiella , Klebsiella pneumoniae , Polimixina B , Tigeciclina , Humanos , Polimixina B/administração & dosagem , Polimixina B/uso terapêutico , Polimixina B/efeitos adversos , Masculino , Estudos Retrospectivos , Tigeciclina/administração & dosagem , Tigeciclina/uso terapêutico , Tigeciclina/efeitos adversos , Feminino , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/mortalidade , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Idoso , Klebsiella pneumoniae/efeitos dos fármacos , Pessoa de Meia-Idade , Carbapenêmicos/uso terapêutico , Carbapenêmicos/efeitos adversos , Carbapenêmicos/administração & dosagem , Resultado do Tratamento , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/epidemiologia , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/mortalidadeRESUMO
Chestnuts, despite their nutritional value, pose challenges in starch processing, digestion, and absorption. This study employed various color-fixing formulations and processing methods to simulate the in vitro digestion of both untreated and enzymatically hydrolyzed chestnut flour. Changes in starch properties, digestion characteristics, and estimated glycemic index (eGI) were analyzed to understand how enzymatic hydrolysis affects chestnut flour properties. The results showed that the browning of chestnut flour was the least when the mass ratio of vitamin C, citric acid, and EDTA-Na2 was 9:1:0.3. Following treatment with pullulanase and glucoamylase, the content of rapidly digestible starch decreased to 10 %, while the content of slowly digestible starch and resistant starch increased to 62 % and 27 %, respectively. The eGI value of chestnut flour after enzymatic hydrolysis increased to 61.85-65.14, the hydrolysis rate was 78.37 %-89.20 %, the water holding capacity was 5.3-8.6, the solubility was 51.33 %-58.33 %, and the swelling degree decreased to 2.21-3.33 mL/g.
RESUMO
Coronary heart disease, hypertension, myocarditis, and valvular disease cause myocardial fibrosis, leading to heart enlargement, heart failure, heart rate failure, arrhythmia, and premature ventricular beat, even defibrillation can increase the risk of sudden death. Although cardiac fibrosis is common and widespread, there are still no effective drugs to provide adequate clinical intervention for cardiac fibrosis. In this review article, we classify the compounds for treating cardiac fibrosis into natural products, synthetic compounds, and patent drugs according to their sources. Additionally, the structures, activities and signaling pathways of these compounds are discussed. This review provides insight and could provide a reference for the design of new anti-cardiac fibrosis compounds and the new use of older drugs.
RESUMO
Four series of sulfonamide derivatives (13a-b, 14a-d, 15a-b, and 16a-d) were synthesized and evaluated for their activin receptor-like kinase 5 (ALK5) inhibitory activities. Of these, compounds 13b (IC50 = 0.130 µM) and 15a (IC50 = 0.130 µM) showed the highest inhibitory activities against ALK5 kinase, with activities similar to the positive control LY-2157299. Notably, we discovered that introduction of sulfonamide group at the 2-position of the central imidazole ring significantly increased ALK5 inhibitory activity. Compounds 13b and 15a did not show toxicity in A549 cells up to the maximum concentration of 50 µM, and effectively inhibited TGF-ß1-induced Smad-signaling and cell motility in A549 cells. The results indicate that compounds 13b and 15a are worth of further development as anticancer agents.
RESUMO
In recent years, due to the increasing requirement for real-time and massive data processing, optical analog computation has arisen as a promising alternative to digital computation. Optical spatial differentiation plays a fundamentally important role in various emerging technologies, including augmented reality, autonomous driving, and object recognition. However, previous demonstrations encountered several limitations, such as the dependence on polarization states and a typically limited numerical aperture (NA) of about 0.5, especially in the transmission mode. Here, a new, to our knowledge, design strategy based on the evolution between impedance matching and mismatching in a metasurface is proposed to fill this gap, which can perform dual-polarized second-order derivative for image processing. Our scheme enables high transmission under dual polarization over an 85° incident angle range (NA = 0.996), resulting in more than twofold spatial resolution. Our work paves the way for polarization-insensitive high-resolution signal and image processing in the terahertz region.
RESUMO
In precision medicine and clinical pain management, the creation of quantitative, objective indicators to assess somatosensory sensitivity was essential. This study proposed a fusion approach for decoding human somatosensory sensitivity, which combined multimodal (quantitative sensory test and neurophysiology) features to classify the dataset on individual somatosensory sensitivity and reveal distinct types of brain activation patterns. Sixty healthy participants took part in the experiment on somatosensory sensitivity that implemented cold, heat, mechanical punctate, and pressure stimuli, and the resting-state electroencephalography (EEG) was collected using BrainVision. The quantitative sensory testing (QST) scores of the participants were clustered using the unsupervised k-means algorithm into four subgroups: generally hypersensitive (HS), generally non-sensitive (NS), predominantly thermally sensitive (TS), and predominantly mechanically sensitive (MS). Furthermore, two types of power spectral density (PSD), band-based PSD (BB-PSD) and frequency-based PSD (FB-PSD), and two types of inter-electrode connectivity (IEC), band-based connectivity (BBC) and frequency-based connectivity (FBC), derived from resting-state EEG were subjected to feature selection with a proposed prior-compared minimum-redundancy maximum-relevance (PCMRMR) protocol. Their effectiveness was then tested by the supervised classification tasks using support vector machine (SVM), k-nearest neighbor (kNN), random forest (RF), and Gaussian classifier (GC). Brain networks of four somatosensory types were revealed by decoding fused multimodal data, namely type-averaged connectivity. The data from sixty healthy individuals were divided into training (n =59) and validation (n =1) datasets according to leave-one-subject-out (LOSO) criteria. The FBC was identified, which can serve as better brain signatures than BB-PSD, FB-PSD, and BBC to classify subjects as HS, NS, TS, or MS groups. Using the SVM, kNN, RF, and GC models, the best accuracy of 87% was obtained when classifying participants into HS, NS, TS, or MS groups. Moreover, the brain networks were decoded from HS, NS, TS, and MS groups by decoding the type-averaged connectivity fused from somatosensory phenotypes and selected FBC. It indicated that quantified multi-parameter somatosensory sensitivity could be achieved with acceptable accuracy, leading to considerable possibilities for using objective pain perception evaluation in clinical practice.
Assuntos
Algoritmos , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Masculino , Feminino , Adulto , Adulto Jovem , Voluntários Saudáveis , Máquina de Vetores de Suporte , Descanso/fisiologia , Córtex Somatossensorial/fisiologia , Temperatura Baixa , Temperatura AltaRESUMO
Copper is one of the predominant water pollutants. Excessive exposure to copper can cause harm to animal health, affecting the central nervous system and causing blood abnormalities. Cuproptosis is a novel form of cell death that differs from previous programmed cell death methods. However, the impact of copper on the intestines remains unclear. Therefore, we investigated the effects of different concentrations of copper exposure on the intestinal proteome of Takifugu rubripes (T. rubripes). Relevant biomarkers were used to detect cuproptosis. We revealed the crosstalk relationship between cuproptosis and self-rescue at different concentrations, and discussed the feasibility of using potential cuproptosis indicators as anti-infection factors. We observed intestinal damage in the three copper exposure groups, especially in T. rubripes treated with 100 and 500⯵g/L copper, with shedding and breakage of intestinal villus and fuzzy and loose structure of intestinal mucosa. The presence of copper stress not only causes cuproptosis but also oxidative damage caused by reactive oxygen species (ROS). The results of quantitative proteomics by TMT showed that compared to the 50 and 100⯵g/L copper exposure groups, the expression of glutaminase, pyruvate kinase, and skin mucus lectin in the 500⯵g/L group was significantly increased. The positive mediators COX5A and CTNNB1, as well as the negative mediators CD4 and FDXR, were found to be differentially expressed. Using the protein expression trends of cuproptosis indicator factors FDX1 and DLAT to indicate the concentration of copper ions in the environment. In addition, we found a new effect of promoting ferroptosis: providing additional copper ions can activate the phenomenon of ferroptosis. Our results expand our understanding of the potential health risks of copper in T. rubripes. At the same time, it is of great significance for the process of copper poisoning and the development of new environmental toxicology detection reagents.
Assuntos
Cobre , Proteoma , Takifugu , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Proteoma/efeitos dos fármacos , Takifugu/metabolismo , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Biomarcadores/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.
Assuntos
Transtornos Mentais , Humanos , Transtornos Mentais/fisiopatologia , Transtornos Mentais/terapia , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiopatologiaRESUMO
Based on a critical examination of type specimens, images of living plants, and the literature has shown Rhododendronoligocarpum to be conspecific with R.leishanicum. Although slight variations in corolla colour exist amongst different populations of R.oligocarpum, it does not serve as a key distinguishing trait. Therefore, we reduced R.oligocarpum to a synonym of R.leishanicum, and recommend placing it in Subsection Maculifera.
RESUMO
To elucidate the distribution law of the multiphase coupling slag discharge flow field in gas-lift reverse circulation during drilling shaft sinking, a numerical analysis model of gas-liquid-solid multiphase coupling slag discharge was established by CFD-DEM (Coupling of computational fluid dynamics and discrete element method) method, taking the drilling of North Wind well in Taohutu Coal Mine as an example. This model presented the distribution of the multiphase flow field in the slag discharge pipe and at the bottom hole, and was validated through experimentation and theoretical analysis. Finally, the impact of factors, including bit rotation speed, gas injection rate, air duct submergence ratio, and mud viscosity on the slag discharge flow field was clarified. The results indicated that the migration of rock slag at the bottom of the well was characterized by "slip, convergence, suspension, adsorption, and lifting". The slag flow in the discharge pipe exhibited the states of "high density, low flow rate" and "low density, high flow rate", respectively. The multiphase fluid flow patterns in the well bottom and slag discharge pipe were horizontal and axial flows, respectively. The model test of the gas lift reversed circulation slag discharge and the theoretical model of the bottom hole fluid velocity distribution confirmed the accuracy of the multiphase coupling slag discharge flow field distribution model. The rotation speed of the drill bit had the most significant impact on the bottom hole flow field. Increasing the rotation speed of the drill bit can significantly enhance the tangential velocity of the bottom hole fluid, increase the pressure difference between the bottom hole and annular mud column, and improve the adsorption capacity of the slag suction port. These findings can provide valuable insights for gas lift reverse circulation well washing in western drilling shaft sinking.
RESUMO
In China, fence net aquaculture practices have been established in some subsidence waters that have been formed in coal mining subsidence areas. Within this dynamic ecological context, diverse fish species grow continuously until being harvested at the culmination of their production cycle. The purpose of this study was to investigate diverse factors influencing the bioavailability and distribution of mercury (Hg) and methylmercury (MeHg), which have high physiological toxicity in fish, in the Guqiao coal mining subsidence area in Huainan, China. Mercury and MeHg were analyzed in 38 fish samples of eight species using direct mercury analysis (DMA-80) and gas chromatography-cold vapor atomic fluorescence spectrometry (GC-CVAFAS). The analysis results show that the ranges of Hg and MeHg content and methylation rate in the fish were 7.84-85.18â¯ng/g, 0.52-3.52â¯ng/g, and 0.81-42.68â¯%, respectively. Meanwhile, conclusions are also summarized as following: (1) Monophagous herbivorous fish that were fed continuously in fence net aquaculture areas had higher MeHg levels and mercury methylation rates than carnivorous fish. Hg and MeHg contents were affected by different feeding habits of fish. (2) Bottom-dwelling fish show higher MeHg levels, and habitat selection in terms of water depth also partially affected the MeHg content of fish. (3) The effect of fence net aquaculture on methylation of fish in subsidence water is mainly from feed and mercury-containing bottom sediments. However, a time-lag is observed in the physiological response of benthic fishes to the release of Hg from sediments. Our findings provides baseline reference data for the ecological impact of fence net aquaculture in waters affected by soil subsidence induced by coal mining in China. Prevalent environmental contaminants within coal mining locales, notably Hg, may infiltrate rain-induced subsidence waters through various pathways.
Assuntos
Aquicultura , Minas de Carvão , Monitoramento Ambiental , Peixes , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Compostos de Metilmercúrio/análise , Animais , Mercúrio/análise , Poluentes Químicos da Água/análise , Peixes/metabolismo , China , Monitoramento Ambiental/métodosRESUMO
Optical information transmission is vital in modern optics and photonics due to its concurrent and multi-dimensional nature, leading to tremendous applications such as optical microscopy, holography, and optical sensing. Conventional optical information transmission technologies suffer from bulky optical setup and information loss/crosstalk when meeting scatterers or obstacles in the light path. Here, we theoretically propose and experimentally realize the simultaneous manipulation of the coherence lengths and coherence structures of the light beams with the disordered metasurfaces. The ultra-robust optical information transmission and self-reconstruction can be realized by the generated partially coherent beam with modulated coherence structure even 93% of light is recklessly obstructed during light transmission, which brings new light to robust optical information transmission with a single metasurface. Our method provides a generic principle for the generalized coherence manipulation on the photonic platform and displays a variety of functionalities advancing capabilities in optical information transmission such as meta-holography and imaging in disordered and perturbative media.
RESUMO
Hypoxia-inducing factor-1α (HIF-1α) is overexpressed in variety of tumor patients and plays an important role in the regulation of hypoxia response in tumor cells. Therefore, its inhibitors have become one of the targets for the treatment of a variety of cancers. Two series of panaxadiol (PD) ester derivatives containing pyrazole (18a-j) and pyrrole (19a-n) moiety were synthesized and their HIF-1α inhibitory activities were evaluated. Among all the target compouds, compounds 18c, 19d, and 19n (IC50 = 8.70-10.44 µM) showed better HIF-1α inhibitory activity than PD (IC50 = 13.35 µM). None of these compounds showed cytotoxicity above 100 µM and inhibited HIF-1α transcription in a dose-dependent manner. These compounds showed good antitumor activity and provide lead compounds for further design and activity study of PD ester derivatives.