Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4086, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744858

RESUMO

Sustainable battery recycling is essential for achieving resource conservation and alleviating environmental issues. Many open/closed-loop strategies for critical metal recycling or direct recovery aim at a single component, and the reuse of mixed cathode materials is a significant challenge. To address this barrier, here we propose an upcycling strategy for spent LiFePO4 and Mn-rich cathodes by structural design and transition metal replacement, for which uses a green deep eutectic solvent to regenerate a high-voltage polyanionic cathode material. This process ensures the complete recycling of all the elements in mixed cathodes and the deep eutectic solvent can be reused. The regenerated LiFe0.5Mn0.5PO4 has an increased mean voltage (3.68 V versus Li/Li+) and energy density (559 Wh kg-1) compared with a commercial LiFePO4 (3.38 V and 524 Wh kg-1). The proposed upcycling strategy can expand at a gram-grade scale and was also applicable for LiFe0.5Mn0.5PO4 recovery, thus achieving a closed-loop recycling between the mixed spent cathodes and the next generation cathode materials. Techno-economic analysis shows that this strategy has potentially high environmental and economic benefits, while providing a sustainable approach for the value-added utilization of waste battery materials.

2.
Nature ; 628(8007): 313-319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570689

RESUMO

Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science1-3. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market4-8. We report the fast and scalable synthesis of a wide variety of MTe2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe2 as a representative, we produced more than a hundred grams (108 g) of NbTe2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium-oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization.

3.
Nat Commun ; 15(1): 2905, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575613

RESUMO

Two-dimensional materials with ultrahigh in-plane thermal conductivity are ideal for heat spreader applications but cause significant thermal contact resistance in complex interfaces, limiting their use as thermal interface materials. In this study, we present an interfacial phonon bridge strategy to reduce the thermal contact resistance of boron nitride nanosheets-based composites. By using a low-molecular-weight polymer, we are able to manipulate the alignment of boron nitride nanosheets through sequential stacking and cutting, ultimately achieving flexible thin films with a layer of arc-like structure superimposed on perpendicularly aligned ones. Our results suggest that arc-like structure can act as a phonon bridge to lower the contact resistance by 70% through reducing phonon back-reflection and enhancing phonon coupling efficiency at the boundary. The resulting composites exhibit ultralow thermal contact resistance of 0.059 in2 KW-1, demonstrating effective cooling of fast-charging batteries at a thickness 2-5 times thinner than commercial products.

4.
Adv Mater ; : e2401018, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602072

RESUMO

It remains a significant challenge to construct active sites to break the trade-off between oxidation and reduction processes occurring in battery cathodes with conversion mechanism, especially for the oxygen reduction and evolution reactions (ORR/OER) involved in the zinc-air batteries (ZABs). Here, using a high-entropy-driven electric dipole transition strategy to activate and stabilize the tetrahedral sites is proposed, while enhancing the activity of octahedral sites through orbital hybridization in a FeCoNiMnCrO spinel oxide, thus constructing bipolar dual-active sites with high-low valence states, which can effectively decouple ORR/OER. The FeCoNiMnCrO high-entropy spinel oxide with severe lattice distortion, exhibits a strong 1s→4s electric dipole transition and intense t2g(Co)/eg(Ni)-2p(OL) orbital hybridization that regulates the electronic descriptors, eg and t2g, which leads to the formation of low-valence Co tetrahedral sites (Coth) and high-valence Ni octahedral sites (Nioh), resulting in a higher half-wave potential of 0.87 V on Coth sites and a lower overpotential of 0.26 V at 10 mA cm-2 on Nioh sites as well as a superior performance of ZABs compared to low/mild entropy spinel oxides. Therefore, entropy engineering presents a distinctive approach for designing catalytic sites by inducing novel electromagnetic properties in materials across various electrocatalytic reactions, particularly for decoupling systems.

5.
Nat Commun ; 15(1): 2167, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461148

RESUMO

Developing highly efficient catalysts is significant for Li-CO2 batteries. However, understanding the exact structure of catalysts during battery operation remains a challenge, which hampers knowledge-driven optimization. Here we use X-ray absorption spectroscopy to probe the reconstruction of CoSx (x = 8/9, 1.097, and 2) pre-catalysts and identify the local geometric ligand environment of cobalt during cycling in the Li-CO2 batteries. We find that different oxidized states after reconstruction are decisive to battery performance. Specifically, complete oxidation on CoS1.097 and Co9S8 leads to electrochemical performance deterioration, while oxidation on CoS2 terminates with Co-S4-O2 motifs, leading to improved activity. Density functional theory calculations show that partial oxidation contributes to charge redistributions on cobalt and thus facilitates the catalytic ability. Together, the spectroscopic and electrochemical results provide valuable insight into the structural evolution during cycling and the structure-activity relationship in the electrocatalyst study of Li-CO2 batteries.

6.
Chem Rev ; 124(5): 2839-2887, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427022

RESUMO

The popularity of portable electronic devices and electric vehicles has led to the drastically increasing consumption of lithium-ion batteries recently, raising concerns about the disposal and recycling of spent lithium-ion batteries. However, the recycling rate of lithium-ion batteries worldwide at present is extremely low. Many factors limit the promotion of the battery recycling rate: outdated recycling technology is the most critical one. Existing metallurgy-based recycling methods rely on continuous decomposition and extraction steps with high-temperature roasting/acid leaching processes and many chemical reagents. These methods are tedious with worse economic feasibility, and the recycling products are mostly alloys or salts, which can only be used as precursors. To simplify the process and improve the economic benefits, novel recycling methods are in urgent demand, and direct recycling/regeneration is therefore proposed as a next-generation method. Herein, a comprehensive review of the origin, current status, and prospect of direct recycling methods is provided. We have systematically analyzed current recycling methods and summarized their limitations, pointing out the necessity of developing direct recycling methods. A detailed analysis for discussions of the advantages, limitations, and obstacles is conducted. Guidance for future direct recycling methods toward large-scale industrialization as well as green and efficient recycling systems is also provided.

7.
Nat Commun ; 15(1): 2245, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472279

RESUMO

Bifacial perovskite solar cells have shown great promise for increasing power output by capturing light from both sides. However, the suboptimal optical transmittance of back metal electrodes together with the complex fabrication process associated with front transparent conducting oxides have hindered the development of efficient bifacial PSCs. Here, we present a novel approach for bifacial perovskite devices using single-walled carbon nanotubes as both front and back electrodes. single-walled carbon nanotubes offer high transparency, conductivity, and stability, enabling bifacial PSCs with a bifaciality factor of over 98% and a power generation density of over 36%. We also fabricate flexible, all-carbon-electrode-based devices with a high power-per-weight value of 73.75 W g-1 and excellent mechanical durability. Furthermore, we show that our bifacial devices have a much lower material cost than conventional monofacial PSCs. Our work demonstrates the potential of SWCNT electrodes for efficient, stable, and low-cost bifacial perovskite photovoltaics.

8.
ACS Appl Mater Interfaces ; 16(13): 16164-16174, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38514249

RESUMO

Single-metal-site catalysts have recently aroused extensive research in electrochemical energy fields such as zinc-air batteries and water splitting, but their preparation is still a huge challenge, especially in flexible catalyst films. Herein, we propose a sublimation strategy in which metal phthalocyanine molecules with defined isolated metal-N4 sites are gasified by sublimation and then deposited on flexible single-wall carbon nanotube (SWCNT) films by means of π-π coupling interactions. Specifically, iron phthalocyanine anchored on the SWCNT film prepared was directly used to boost the cathodic oxygen reduction reaction of the zinc-air battery, showing a high peak power density of 247 mW cm-2. Nickel phthalocyanine and cobalt phthalocyanine were, respectively, stabilized on SWCNT films as the anodic and cathodic electrocatalysts for water splitting, showing a low potential of 1.655 V at 10 mA cm-2. In situ Raman spectra and theoretical studies demonstrate that highly efficient activities originate from strain-induced metal phthalocyanine on SWCNTs. This work provides a universal preparation method for single-metal-site catalysts and innovative insights for electrocatalytic mechanisms.

9.
ACS Nano ; 18(13): 9285-9310, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38522089

RESUMO

Replacing liquid electrolytes and separators in conventional lithium-ion batteries with solid-state electrolytes (SSEs) is an important strategy to ensure both high energy density and high safety. Searching for fast ionic conductors with high electrochemical and chemical stability has been the core of SSE research and applications over the past decades. Based on the atomic-level thickness and infinitely expandable planar structure, numerous two-dimensional materials (2DMs) have been exploited and applied to address the most critical issues of low ionic conductivity of SSEs and lithium dendrite growth in all-solid-state lithium batteries. This review introduces the research process of 2DMs in SSEs, then summarizes the mechanisms and strategies of inert and active 2DMs toward Li+ transport to improve the ionic conductivity and enhance the electrode/SSE interfacial compatibility. More importantly, the main challenges and future directions for the application of 2DMs in SSEs are considered, including the importance of exploring the relationship between the anisotropic structure of 2DMs and Li+ diffusion behavior, the exploitation of more 2DMs, and the significance of in situ characterizations in elucidating the mechanisms of Li+ transport and interfacial reactions. This review aims to provide a comprehensive understanding to facilitate the application of 2DMs in SSEs.

10.
Nat Mater ; 23(5): 604-611, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491148

RESUMO

The conventional fabrication of bulk van der Waals (vdW) materials requires a temperature above 1,000 °C to sinter from the corresponding particulates. Here we report the near-room-temperature densification (for example, ∼45 °C for 10 min) of two-dimensional nanosheets to form strong bulk materials with a porosity of <0.1%, which are mechanically stronger than the conventionally made ones. The mechanistic study shows that the water-mediated activation of van der Waals interactions accounts for the strong and dense bulk materials. Initially, water adsorbed on two-dimensional nanosheets lubricates and promotes alignment. The subsequent extrusion closes the gaps between the aligned nanosheets and densifies them into strong bulk materials. Water extrusion also generates stresses that increase with moulding temperature, and too high a temperature causes intersheet misalignment; therefore, a near-room-temperature moulding process is favoured. This technique provides an energy-efficient alternative to design a wide range of dense bulk van der Waals materials with tailored compositions and properties.

11.
Natl Sci Rev ; 11(3): nwad323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38312377

RESUMO

Tunability of optical performance is one of the key technologies for adaptive optoelectronic applications, such as camouflage clothing, displays, and infrared shielding. High-precision spectral tunability is of great importance for some special applications with on-demand adaptability but remains challenging. Here we demonstrate a galvanostatic control strategy to achieve this goal, relying on the finding of the quantitative correlation between optical properties and electrochemical reactions within materials. An electrochromic electro-optical efficiency index is established to optically fingerprint and precisely identify electrochemical redox reactions in the electrochromic device. Consequently, the charge-transfer process during galvanostatic electrochemical reaction can be quantitatively regulated, permitting precise control over the final optical performance and on-demand adaptability of electrochromic devices as evidenced by an ultralow deviation of <3.0%. These findings not only provide opportunities for future adaptive optoelectronic applications with strict demand on precise spectral tunability but also will promote in situ quantitative research in a wide range of spectroelectrochemistry, electrochemical energy storage, electrocatalysis, and material chemistry.

12.
Nat Commun ; 15(1): 1672, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395923

RESUMO

The practical applications of solar-driven water splitting pivot on significant advances that enable scalable production of robust photoactive films. Here, we propose a proof-of-concept for fabricating robust photoactive films by a particle-implanting technique (PiP) which embeds semiconductor photoabsorbers in the liquid metal. The strong semiconductor/metal interaction enables resulting films efficient collection of photogenerated charges and superior photoactivity. A photoanode of liquid-metal embraced BiVO4 can stably operate over 120 h and retain ~ 70% of activity when scaled from 1 to 64 cm2. Furthermore, a Z-scheme photocatalyst film of liquid-metal embraced BiVO4 and Rh-doped SrTiO3 particles can drive overall water splitting under visible light, delivering an activity 2.9 times higher than that of the control film with gold support and a 110 h stability. These results demonstrate the advantages of the PiP technique in constructing robust and efficient photoactive films for artificial photosynthesis.

13.
Nat Commun ; 15(1): 1046, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316784

RESUMO

Adding extra raw materials for direct recycling or upcycling is prospective for battery recycling, but overlooks subtracting specific components beforehand can facilitate the recycling to a self-sufficient mode of sustainable production. Here, a subtractive transformation strategy of degraded LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 to a 5 V-class disordered spinel LiNi0.5Mn1.5O4-like cathode material is proposed. Equal amounts of Co and Ni from degraded materials are selectively extracted, and the remaining transition metals are directly converted into Ni0.4Co0.1Mn1.5(CO3)2 precursor for preparing cathode material with in-situ Co doping. The cathode material with improved conductivity and bond strength delivers high-rate (10 C and 20 C) and high-temperature (60 °C) cycling stability. This strategy with no extra precursor input can be generalized to practical degraded black mass and reduces the dependence of current cathode production on rare elements, showing the potential of upcycling from the spent to a next-generation 5 V-class cathode material for the sustainable Li-ion battery industry.

14.
J Am Chem Soc ; 146(5): 3553-3563, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38285529

RESUMO

Flexible membranes with ultrathin thickness and excellent mechanical properties have shown great potential for broad uses in solid polymer electrolytes (SPEs), on-skin electronics, etc. However, an ultrathin membrane (<5 µm) is rarely reported in the above applications due to the inherent trade-off between thickness and antifailure ability. We discover a protic solvent penetration strategy to prepare ultrathin, ultrastrong layered films through a continuous interweaving of aramid nanofibers (ANFs) with the assistance of simultaneous protonation and penetration of a protic solvent. The thickness of a pure ANF film can be controlled below 5 µm, with a tensile strength of 556.6 MPa, allowing us to produce the thinnest SPE (3.4 µm). The resultant SPEs enable Li-S batteries to cycle over a thousand times at a high rate of 1C due to the small ionic impedance conferred by the ultrathin characteristic and regulated ionic transportation. Besides, a high loading of the sulfur cathode (4 mg cm-2) with good sulfur utilization was achieved at a mild temperature (35 °C), which is difficult to realize in previously reported solid-state Li-S batteries. Through a simple laminating process at the wet state, the thicker film (tens of micrometers) obtained exhibits mechanical properties comparable to those of thin films and possesses the capability to withstand high-velocity projectile impacts, indicating that our technique features a high degree of thickness controllability. We believe that it can serve as a valuable tool to assemble nanomaterials into ultrathin, ultrastrong membranes for various applications.

15.
Adv Sci (Weinh) ; 11(1): e2304425, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37955914

RESUMO

Recycling cathode materials from spent lithium-ion batteries (LIBs) is critical to a sustainable society as it will relief valuable but scarce recourse crises and reduce environment burdens simultaneously. Different from conventional hydrometallurgical and pyrometallurgical recycling methods, direct regeneration relies on non-destructive cathode-to-cathode mode, and therefore, more time and energy-saving along with an increased economic return and reduced CO2 footprint. This review retrospects the history of direct regeneration and discusses state-of-the-art development. The reported methods, including high-temperature solid-state, hydrothermal/ionothermal, molten salt thermochemistry, and electrochemical method, are comparatively introduced, targeting at illustrating their underlying regeneration mechanism and applicability. Further, representative repairing and upcycling studies on wide-applied cathodes, including LiCoO2 (LCO), ternary oxides, LiFePO4 (LFP), and LiMn2 O4 (LMO), are presented, with an emphasis on milestone cases. Despite these achievements, there remain several critical issues that shall be addressed before the commercialization of the mentioned direct regeneration methods.

16.
Adv Mater ; 36(13): e2311553, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124361

RESUMO

Direct regeneration of spent lithium-ion batteries has received wide attention owing to its potential for resource reuse and environmental benefits. The repair effect of direct regeneration methods undergoing heterogeneous repair process is usually inferior, while homogenous repair process plays a vital role to achieve satisfactory repair results. However, the practical applications of current homogeneous repair methods are challenged by the complex operations and relatively high costs owing to the requirement of additional heating or pressurization. Herein, this work proposes a simple strategy to achieve homogeneous repair of spent cathode materials under relatively mild conditions by uniformly precoating lithium source at room temperature and atmospheric pressure. Followed by annealing, highly degraded LiNi0.83Co0.12Mn0.05O2 with severe Li deficiency and irreversible phase transition is repaired to have an initial capacity of 181.6 mAh g-1 and capacity retention of 80.7% after 150 cycles at 0.5 C. The lithium source used in this strategy is from the spent lithium anode. Moreover, this strategy is suitable for the direct regeneration of various layer oxide cathode materials with different failure degrees. This work provides both theoretical guidance and practical examples for the straightforward, effective, and universally applicable direct regeneration methods.

17.
Nat Commun ; 14(1): 7948, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040742

RESUMO

Bi3TiNbO9, a layered ferroelectric photocatalyst, exhibits great potential for overall water splitting through efficient intralayer separation of photogenerated carriers motivated by a depolarization field along the in-plane a-axis. However, the poor interlayer transport of carriers along the out-of-plane c-axis, caused by the significant potential barrier between layers, leads to a high probability of carrier recombination and consequently results in low photocatalytic activity. Here, we have developed an efficient photocatalyst consisting of Bi3TiNbO9 nanosheets with a gradient tungsten (W) doping along the c-axis. This results in the generation of an additional electric field along the c-axis and simultaneously enhances the magnitude of depolarization field within the layers along the a-axis due to strengthened structural distortion. The combination of the built-in field along the c-axis and polarization along the a-axis can effectively facilitate the anisotropic migration of photogenerated electrons and holes to the basal {001} surface and lateral {110} surface of the nanosheets, respectively, enabling desirable spatial separation of carriers. Hence, the W-doped Bi3TiNbO9 ferroelectric photocatalyst with Rh/Cr2O3 cocatalyst achieves an efficient and durable overall water splitting feature, thereby providing an effective pathway for designing excellent layered ferroelectric photocatalysts.

18.
Adv Sci (Weinh) ; 10(36): e2304174, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37991135

RESUMO

In the fast-evolving landscape of decentralized and personalized healthcare, the need for multimodal biosensing systems that integrate seamlessly with the human body is growing rapidly. This presents a significant challenge in devising ultraflexible configurations that can accommodate multiple sensors and designing high-performance sensing components that remain stable over long periods. To overcome these challenges, ultraflexible organic photodetectors (OPDs) that exhibit exceptional performance under near-infrared illumination while maintaining long-term stability are developed. These ultraflexible OPDs demonstrate a photoresponsivity of 0.53 A W-1 under 940 nm, shot-noise-limited specific detectivity of 3.4 × 1013 Jones, and cut-off response frequency beyond 1 MHz at -3 dB. As a result, the flexible photoplethysmography sensor boasts a high signal-to-noise ratio and stable peak-to-peak amplitude under hypoxic and hypoperfusion conditions, outperforming commercial finger pulse oximeters. This ensures precise extraction of blood oxygen saturation in dynamic working conditions. Ultraflexible OPDs are further integrated with conductive polymer electrodes on an ultrathin hydrogel substrate, allowing for direct interface with soft and dynamic skin. This skin-integrated sensing platform provides accurate measurement of photoelectric and biopotential signals in a time-synchronized manner, reproducing the functionality of conventional technologies without their inherent limitations.

19.
Light Sci Appl ; 12(1): 278, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37989728

RESUMO

Low-dimensional materials exhibit unique quantum confinement effects and morphologies as a result of their nanoscale size in one or more dimensions, making them exhibit distinctive physical properties compared to bulk counterparts. Among all low-dimensional materials, due to their atomic level thickness, two-dimensional materials possess extremely large shape anisotropy and consequently are speculated to have large optically anisotropic absorption. In this work, we demonstrate an optoelectronic device based on the combination of two-dimensional material and carbon dot with wide bandgap. High-efficient luminescence of carbon dot and extremely large shape anisotropy (>1500) of two-dimensional material with the wide bandgap of >4 eV cooperatively endow the optoelectronic device with multi-functions of optically anisotropic blue-light emission, visible light modulation, wavelength-dependent ultraviolet-light detection as well as blue fluorescent film assemble. This research opens new avenues for constructing multi-function-integrated optoelectronic devices via the combination of nanomaterials with different dimensions.

20.
Angew Chem Int Ed Engl ; 62(51): e202314509, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37884441

RESUMO

The pulverization of alloying anodes significantly restricts their use in lithium-ion batteries (LIBs). This study presents a dual-phase solid electrolyte interphase (SEI) design that incorporates finely dispersed Al nanoparticles within the LiPON matrix. This distinctive dual-phase structure imparts high stiffness and toughness to the integrated SEI film. In comparison to single-phase LiPON film, the optimized Al/LiPON dual-phase SEI film demonstrates a remarkable increase in fracture toughness by 317.8 %, while maintaining stiffness, achieved through the substantial dissipation of strain energy. Application of the dual-phase SEI film on an Al anode leads to a 450 % enhancement in cycling stability for lithium storage in dual-ion batteries. A similar enhancement in cycling stability for silicon anodes, which face severe volume expansion issues, is also observed, demonstrating the broad applicability of the dual-phase SEI design. Specifically, homogeneous Li-Al alloying has been observed in conventional LIBs, even when paired with a high mass loading LiNi0.5 Co0.3 Mn0.2 O2 cathode (7 mg cm-2 ). The dual-phase SEI film design can also accelerate the diffusion kinetics of Li-ions through interface electronic structure regulation. This dual-phase design can integrate stiffness and toughness into a single SEI film, providing a pathway to enhance both the structural stability and rate capability of alloying anodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA