Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 17: 6047-6064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36510621

RESUMO

Background: Amphotericin B (AmB) nanoformulations have been widely used for the treatment of invasive fungal infections in clinical practice, all of which are lyophilized solid dosage forms that improve storage stability. The colloidal stability of reconstituted lyophilized nanoparticles in an injection medium is a critical quality attribute that directly affects their safety and efficacy during clinical use. Methods: In the present study, the colloidal stability of commercial AmB nanoformulations, including AmB cholesteryl sulfate complex (AmB-CSC) and AmB liposome (AmB-Lipo), was evaluated using the dynamic (DLS) and static multiple light scattering (SMLS) techniques. Results: Compared to the DLS technique, the SMLS technique allows for a more objective and accurate evaluation of the colloidal stability of AmB nanoformulations. The results obtained using the SMLS technique demonstrated that AmB-CSC and AmB-Lipo exhibited excellent colloidal stability in both sterile water and 5% dextrose injection. The disk-like structure of the AmB-CSC nanoparticles more readily adsorbed serum proteins to form protein corona compared to the spherical structure of AmB-Lipo after incubation with serum. Additionally, AmB-CSC and AmB-Lipo can significantly reduce the in vitro cytotoxicity and in vivo nephrotoxicity of AmB, which may be attributed to the good colloidal stability and the improved pharmacokinetic profiles of AmB nanoformulations. Conclusion: To the best of our knowledge, this study is the first to compare the colloidal stability of commercial AmB nanoformulations. These findings will provide useful information not only to inform the clinical use of available AmB nanoformulations but also for improving the design and conduct of translational research on novel AmB nanomedicines.


Assuntos
Nanopartículas , Nanopartículas/química , Antifúngicos/química
2.
Plant Physiol Biochem ; 186: 76-87, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35820349

RESUMO

Drought stress commonly happens more than once during the life cycle of perennial trees. Stress memory endows better capacity to cope with repeated stresses for plants, while the underlying mechanisms are not fully elucidated. In this study, 2-month-old saplings of two mulberry cultivars (Husang32 and 7307 of Morus multicaulis) with or without an early soil water deficit were subjected to subsequent drought for 9 days. The shoot height growth, biomass production, stable carbon isotope discrimination, phytohormones, reactive oxygen species (ROS), osmotic substances and antioxidant enzymes were analyzed after the first and the second drought, respectively. Drought priming saplings sustained comparable or slightly higher biomass accumulation under the second drought than those non-priming. They also exhibited decreased levels of soluble sugars, free proline and soluble proteins, lower accumulation of malonaldehyde (MDA) and superoxide anion (O2•-), reduced activities of superoxide dismutase (SOD) and peroxidase (POD) compared to non-priming plants. Moreover, cultivar Husang32 exhibited elevated abscisic acid (ABA) and jasmonic acid (JA) where 7307 displayed opposite changes. PCA suggests that MDA, H2O2, free proline, SOD and POD in roots, and ROS, soluble sugars and glutamate reductase in leaves are dominant factors influenced by stress memory. ABA and JA in leaves also play important roles in exerting drought imprints. Collectively, stress memory can confer mulberry resistance to recurrent drought via combined regulations of antioxidative protection, osmotic adjustment and phytohormonal responses.


Assuntos
Secas , Morus , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Morus/fisiologia , Reguladores de Crescimento de Plantas , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Açúcares , Superóxido Dismutase/metabolismo
3.
Front Plant Sci ; 11: 1310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983200

RESUMO

Although mulberry cultivars Wubu, Yu711, and 7307 display distinct anatomical, morphological, and agronomic characteristics under natural conditions, it remains unclear if they differ in drought tolerance. To address this question and elucidate the underlying regulatory mechanisms at the whole-plant level, 2-month old saplings of the three mulberry cultivars were exposed to progressive soil water deficit for 5 days. The physiological responses and transcriptional changes of PIPs in different plant tissues were analyzed. Drought stress led to reduced leaf relative water content (RWC) and tissue water contents, differentially expressed PIPs, decreased chlorophyll and starch, increased soluble sugars and free proline, and enhanced activities of antioxidant enzymes in all plant parts of the three cultivars. Concentrations of hydrogen peroxide (H2O2), superoxide anion (O2 •-), and malonaldehyde (MDA) were significantly declined in roots, stimulated in leaves but unaltered in wood and bark. In contrast, except the roots of 7307, soluble proteins were repressed in roots and leaves but induced in wood and bark of the three cultivars in response to progressive water deficit. These results revealed tissue-specific drought stress responses in mulberry. Comparing to cultivar Yu711 and 7307, Wubu showed generally slighter changes in leaf RWC and tissue water contents at day 2, corresponding well to the steady PIP transcript levels, foliar concentrations of chlorophyll, O2 •-, MDA, and free proline. At day 5, Wubu sustained higher tissue water contents in green tissues, displayed stronger responsiveness of PIP transcription, lower concentrations of soluble sugars and starch, lower foliar MDA, higher proline and soluble proteins, higher ROS accumulation and enhanced activities of several antioxidant enzymes. Our results indicate that whole-plant level responses of PIP transcription, osmoregulation through proline and soluble proteins and antioxidative protection are important mechanisms for mulberry to cope with drought stress. These traits play significant roles in conferring the relatively higher drought tolerance of cultivar Wubu and could be potentially useful for future mulberry improvement programmes.

4.
Int J Mol Sci ; 20(15)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362363

RESUMO

The initiation and induction of root primordia are of great importance for adventitious root (AR) formation in cutting propagation of horticultural and forestry crops. However, the underlying mechanisms orchestrating these early phases of AR formation remain largely unexplored. Here, we investigated the physiological and transcriptomic changes during the early AR phases in mulberry stem hardwood cuttings. The results showed that the concentrations of soluble proteins increased, whereas concentrations of soluble sugars and starch were decreased. Indole-3-acetic acid (IAA) and zeatin had a rapid transit peak at 6 h after planting (hAP) and declined thereafter. The activities of peroxidase and catalase persistently increased and indole-3-acetic acid oxidase was maintained at a higher stable level from 0 hAP, while the activities of polyphenol oxidase fluctuated with soluble phenolics and IAA levels. The comparative transcriptome identified 4276 common genes that were differentially regulated at -6, 0 and 54 hAP. They were separated into five clusters with distinct biological functions such as defense response and photosynthesis. Considerable common genes were assigned to pathways of sugar metabolism, mitogen-activated protein kinase, and circadian rhythm. The gene co-expression network analysis revealed three major co-expressed modules involved in stress responses, hormone signaling, energy metabolism, starch metabolism, and circadian rhythm. These findings demonstrate the positive effect of auxin on AR induction, and uncovered the crucial roles of stress responses, hormone signaling and circadian rhythm in coordinating the physiological changes during the early phases of AR formation in mulberry stem hardwood cuttings.


Assuntos
Regulação da Expressão Gênica de Plantas , Morus/fisiologia , Desenvolvimento Vegetal/genética , Raízes de Plantas/fisiologia , Transcriptoma , Biologia Computacional/métodos , Metabolismo Energético , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais
5.
Plants (Basel) ; 8(5)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064066

RESUMO

Physiological and morphological traits have a considerable impact on the biomass production of fast-growing trees. To compare cultivar difference in shoot biomass and investigate its relationships with leaf functional traits in mulberry, agronomic traits and 20 physiological and morphological attributes of 3-year-old mulberry trees from eight cultivars growing in a common garden were analyzed. The cultivars Xiang7920, Yu711, and Yunsang2 had higher shoot fresh biomass (SFB), which was closely associated with their rapid leaf expansion rate, large leaf area, and high stable carbon isotope composition (δ13C). Conversely, the cultivars 7307, Husang32, Wupu, Yunguo1, and Liaolu11 were less productive, and this was primarily the result of slower leaf expansion and smaller leaf size. Growth performance was negatively correlated with leaf δ13C and positively correlated with the total nitrogen concentration, indicating that a compromise exists in mulberry between water use efficiency (WUE) (low δ13C) and high nitrogen consumption for rapid growth. Several morphological traits, including the maximum leaf area (LAmax), leaf width and length, petiole width and length, leaf number per shoot, and final shoot height were correlated with SFB. The physiological traits that were also influential factors of shoot biomass were the leaf δ13C, the total nitrogen concentration, and the water content. Among the studied leaf traits, LAmax, leaf δ13C, and concentrations of chlorophyll a and b were identified as the most representative predictor variables for SFB, accounting for 73% of the variability in SFB. In conclusion, a combination of LAmax, leaf δ13C, and chlorophyll should be considered in selection programs for high-yield mulberry cultivars.

6.
Int J Mol Sci ; 20(24)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888214

RESUMO

Auxin plays essential roles in plant normal growth and development. The auxin signaling pathway relies on the auxin gradient within tissues and cells, which is facilitated by both local auxin biosynthesis and polar auxin transport (PAT). The TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA)/YUCCA (YUC) pathway is the most important and well-characterized pathway that plants deploy to produce auxin. YUCs function as flavin-containing monooxygenases (FMO) catalyzing the rate-limiting irreversible oxidative decarboxylation of indole-3-pyruvate acid (IPyA) to form indole-3-acetic acid (IAA). The spatiotemporal dynamic expression of different YUC gene members finely tunes the local auxin biosynthesis in plants, which contributes to plant development as well as environmental responses. In this review, the recent advances in the identification, evolution, molecular structures, and functions in plant development and stress response regarding the YUC gene family are addressed.


Assuntos
Vias Biossintéticas/genética , Ácidos Indolacéticos/metabolismo , Família Multigênica , Proteínas de Plantas/genética , Plantas/genética , Evolução Molecular , Ácidos Indolacéticos/química , Proteínas de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA