Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 17(11): 3198-3206, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36288500

RESUMO

Linaridins and lanthipeptides are two classes of natural products belonging to the ribosomally synthesized and posttranslationally modified peptide (RiPP) superfamily. Although these two RiPP classes share similar structural motifs such as dehydroamino acids and thioether-based cross-links, the biosynthesis of linaridins and lanthipeptides involved distinct sets of enzymes. Here, we report the identification of a novel lanthipeptide cypepeptin from a recombinant strain of Streptomyces lividans, which harbors most of the cypemycin (a prototypic linaridin) biosynthetic gene cluster but lacks the decarboxylase gene cypD. In contrast to the generally believed structure of cypemycin, multiple d-amino acids and Z-dehydrobutyrines were observed in both cypepeptin and cypemycin, and the stereochemistry of each amino acid was established by the extensive structural analysis in combination with genetic knockout and mutagenesis studies. Comparative analysis of cypemycin and cypepeptin showed that the aminovinyl-cysteine (AviCys) moiety of cypemycin plays an essential role in disrupting the cell integrity of M. luteus, which cannot be functionally substituted by the structurally similar lanthionine moiety.


Assuntos
Produtos Biológicos , Família Multigênica , Sequência de Aminoácidos , Peptídeos/química , Cisteína/metabolismo , Processamento de Proteína Pós-Traducional
2.
ACS Bio Med Chem Au ; 2(2): 109-119, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37101745

RESUMO

HemN is a radical S-adenosylmethionine (SAM) enzyme that catalyzes the anaerobic oxidative decarboxylation of coproporphyrinogen III to produce protoporphyrinogen IX, a key intermediate in heme biosynthesis. Proteins homologous to HemN (HemN-like proteins) are widespread in both prokaryotes and eukaryotes. Although these proteins are in most cases annotated as anaerobic coproporphyrinogen III oxidases (CPOs) in the public database, many of them are actually not CPOs but have diverse functions such as methyltransferases, cyclopropanases, heme chaperones, to name a few. This Perspective discusses the recent advances in the understanding of HemN-like proteins, and particular focus is placed on the diverse chemistries and functions of this growing protein family.

3.
Angew Chem Int Ed Engl ; 60(14): 7570-7575, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33427387

RESUMO

Arsenosugars are a group of arsenic-containing ribosides that are found predominantly in marine algae but also in terrestrial organisms. It has been proposed that arsenosugar biosynthesis involves a key intermediate 5'-deoxy-5'-dimethylarsinoyl-adenosine (DDMAA), but how DDMAA is produced remains elusive. Now, we report characterization of ArsS as a DDMAA synthase, which catalyzes a radical S-adenosylmethionine (SAM)-mediated alkylation (adenosylation) of dimethylarsenite (DMAsIII ) to produce DDMAA. This radical-mediated reaction is redox neutral, and multiple turnover can be achieved without external reductant. Phylogenomic and biochemical analyses revealed that DDMAA synthases are widespread in distinct bacterial phyla with similar catalytic efficiencies; these enzymes likely originated from cyanobacteria. This study reveals a key step in arsenosugar biosynthesis and also a new paradigm in radical SAM chemistry, highlighting the catalytic diversity of this superfamily of enzymes.


Assuntos
Adenosina/química , Monossacarídeos/biossíntese , S-Adenosilmetionina/química , Alquilação , Arseniatos , Arsenitos/química , Catálise , Controle de Medicamentos e Entorpecentes , Escherichia coli/genética , Radicais Livres/química , Oxirredução , Transdução de Sinais , Espectrometria de Massas em Tandem
4.
Angew Chem Int Ed Engl ; 57(22): 6601-6604, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29603551

RESUMO

The radical S-adenosylmethionine (SAM) superfamily enzymes cleave SAM reductively to generate a highly reactive 5'-deoxyadenosyl (dAdo) radical, which initiates remarkably diverse reactions. Unlike most radical SAM enzymes, the class C radical SAM methyltransferase NosN binds two SAMs in the active site, using one SAM to produce a dAdo radical and the second as a methyl donor. Here, we report a mechanistic investigation of NosN in which an allyl analogue of SAM (allyl-SAM) was used. We show that NosN cleaves allyl-SAM efficiently and the resulting dAdo radical can be captured by the olefin moieties of allyl-SAM or 5'-allylthioadenosine (ATA), the latter being a derivative of allyl-SAM. Remarkably, we found that NosN produced two distinct sets of products in the presence and absence of the methyl acceptor substrate, thus suggesting substrate-triggered production of ATA from allyl-SAM. We also show that NosN produces S-adenosylhomocysteine from 5'-thioadenosine and homoserine lactone. These results support the idea that 5'-methylthioadenosine is the direct methyl donor in NosN reactions, and demonstrate great potential to modulate radical SAM enzymes for novel catalytic activities.

5.
Chem Asian J ; 12(12): 1309-1313, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28474489

RESUMO

An asymmetric route to (-)-α-lycorane and (-)-zephyranthine, and a formal total synthesis of (+)-clivonine were achieved. A pivotal intermediate, which serves as a potent precursor for the divergent syntheses of these natural products, was accessed by a diastereoselective Pd-catalyzed cinnamylation of an N-tert-butanesulfinyl imine.


Assuntos
Alcaloides/síntese química , Alcaloides de Amaryllidaceae/síntese química , Fenantridinas/síntese química , Alcaloides/química , Alcaloides de Amaryllidaceae/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Fenantridinas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA