Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nat Commun ; 15(1): 5481, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942792

RESUMO

Tigecycline is widely used for treating complicated bacterial infections for which there are no effective drugs. It inhibits bacterial protein translation by blocking the ribosomal A-site. However, even though it is also cytotoxic for human cells, the molecular mechanism of its inhibition remains unclear. Here, we present cryo-EM structures of tigecycline-bound human mitochondrial 55S, 39S, cytoplasmic 80S and yeast cytoplasmic 80S ribosomes. We find that at clinically relevant concentrations, tigecycline effectively targets human 55S mitoribosomes, potentially, by hindering A-site tRNA accommodation and by blocking the peptidyl transfer center. In contrast, tigecycline does not bind to human 80S ribosomes under physiological concentrations. However, at high tigecycline concentrations, in addition to blocking the A-site, both human and yeast 80S ribosomes bind tigecycline at another conserved binding site restricting the movement of the L1 stalk. In conclusion, the observed distinct binding properties of tigecycline may guide new pathways for drug design and therapy.


Assuntos
Microscopia Crioeletrônica , Ribossomos , Tigeciclina , Tigeciclina/farmacologia , Tigeciclina/química , Humanos , Ribossomos/metabolismo , Ribossomos/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Sítios de Ligação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/efeitos dos fármacos , Modelos Moleculares , RNA de Transferência/metabolismo , RNA de Transferência/química
3.
Ther Drug Monit ; 46(4): 503-511, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38287884

RESUMO

BACKGROUND: The aim of this study was to investigate the factors affecting plasma valproic acid (VPA) concentration in pediatric patients with epilepsy and the clinical significance of CYP2C9 gene polymorphisms in personalized dosing using therapeutic drug monitoring and pharmacogenetic testing. METHODS: The medical records of children with epilepsy who underwent therapeutic drug monitoring at our institution between July 2022 and July 2023 and met the inclusion criteria were reviewed. Statistical analysis was performed to determine whether age, sex, blood ammonia, liver function, kidney function, and other characteristics affected the concentration-to-dose ratio of VPA (CDRV) in these patients. To investigate the effect of CYP2C9 polymorphisms on CDRV, DNA samples were collected from patients and the CYP2C9 genotypes were identified using real-time quantitative PCR. RESULTS: The mean age of 208 pediatric patients with epilepsy was 5.50 ± 3.50 years. Among these patients, 182 had the CYP2C9 *1/*1 genotype, with a mean CDRV (mcg.kg/mL.mg) of 2.64 ± 1.46, 24 had the CYP2C9 *1/*3 genotype, with a mean CDRV of 3.28 ± 1.74, and 2 had the CYP2C9 *3/*3 genotype, with a mean CDRV of 6.46 ± 3.33. There were statistical differences among these 3 genotypes ( P < 0.05). The CDRV in these patients were significantly influenced by age, aspartate aminotransferase, total bilirubin, direct bilirubin, globulin, albumin/globulin ratio, prealbumin, creatinine, and CYP2C9 polymorphisms. In addition, multivariate linear regression analysis identified total bilirubin, direct bilirubin, and CYP2C9 polymorphisms as independent risk factors for high CDRV. CONCLUSIONS: Liver problems and mutations in the CYP2C9 gene increase VPA levels. This underscores the importance of considering these factors when prescribing VPA to children with epilepsy, thereby enhancing the safety and efficacy of the therapy.


Assuntos
Anticonvulsivantes , Citocromo P-450 CYP2C9 , Monitoramento de Medicamentos , Epilepsia , Genótipo , Ácido Valproico , Humanos , Citocromo P-450 CYP2C9/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/sangue , Ácido Valproico/uso terapêutico , Ácido Valproico/sangue , Feminino , Criança , Masculino , Pré-Escolar , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/sangue , Anticonvulsivantes/farmacocinética , Monitoramento de Medicamentos/métodos , Adolescente , Medicina de Precisão/métodos , Lactente , Estudos Retrospectivos , Polimorfismo Genético/genética , Relevância Clínica
4.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961604

RESUMO

Terminal oligopyrimidine motif-containing mRNAs (TOPs) encode all ribosomal proteins in mammals and are regulated to tune ribosome synthesis to cell state. Previous studies implicate LARP1 in 40S- or 80S-ribosome complexes that repress and stabilize TOPs. However, a mechanistic understanding of how LARP1 and TOPs interact with these complexes to coordinate TOP outcomes is lacking. Here, we show that LARP1 senses the cellular supply of ribosomes by directly binding non-translating ribosomal subunits. Cryo-EM structures reveal a previously uncharacterized domain of LARP1 bound to and occluding the 40S mRNA channel. Free cytosolic ribosomes induce sequestration of TOPs in repressed 80S-LARP1-TOP complexes independent of alterations in mTOR signaling. Together, this work demonstrates a general ribosome-sensing function of LARP1 that allows it to tune ribosome protein synthesis to cellular demand.

5.
EMBO Rep ; 24(12): e57984, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37921038

RESUMO

The rixosome defined in Schizosaccharomyces pombe and humans performs diverse roles in pre-ribosomal RNA processing and gene silencing. Here, we isolate and describe the conserved rixosome from Chaetomium thermophilum, which consists of two sub-modules, the sphere-like Rix1-Ipi3-Ipi1 and the butterfly-like Las1-Grc3 complex, connected by a flexible linker. The Rix1 complex of the rixosome utilizes Sda1 as landing platform on nucleoplasmic pre-60S particles to wedge between the 5S rRNA tip and L1-stalk, thereby facilitating the 180° rotation of the immature 5S RNP towards its mature conformation. Upon rixosome positioning, the other sub-module with Las1 endonuclease and Grc3 polynucleotide-kinase can reach a strategic position at the pre-60S foot to cleave and 5' phosphorylate the nearby ITS2 pre-rRNA. Finally, inward movement of the L1 stalk permits the flexible Nop53 N-terminus with its AIM motif to become positioned at the base of the L1-stalk to facilitate Mtr4 helicase-exosome participation for completing ITS2 removal. Thus, the rixosome structure elucidates the coordination of two central ribosome biogenesis events, but its role in gene silencing may adapt similar strategies.


Assuntos
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Nucleares/metabolismo , Rotação , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas Ribossômicas/genética
6.
Nature ; 621(7979): 610-619, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37557913

RESUMO

The proper regulation of transcription is essential for maintaining genome integrity and executing other downstream cellular functions1,2. Here we identify a stable association between the genome-stability regulator sensor of single-stranded DNA (SOSS)3 and the transcription regulator Integrator-PP2A (INTAC)4-6. Through SSB1-mediated recognition of single-stranded DNA, SOSS-INTAC stimulates promoter-proximal termination of transcription and attenuates R-loops associated with paused RNA polymerase II to prevent R-loop-induced genome instability. SOSS-INTAC-dependent attenuation of R-loops is enhanced by the ability of SSB1 to form liquid-like condensates. Deletion of NABP2 (encoding SSB1) or introduction of cancer-associated mutations into its intrinsically disordered region leads to a pervasive accumulation of R-loops, highlighting a genome surveillance function of SOSS-INTAC that enables timely termination of transcription at promoters to constrain R-loop accumulation and ensure genome stability.


Assuntos
Instabilidade Genômica , Regiões Promotoras Genéticas , Estruturas R-Loop , Terminação da Transcrição Genética , Humanos , DNA de Cadeia Simples/metabolismo , Instabilidade Genômica/genética , Mutação , Estruturas R-Loop/genética , RNA Polimerase II/metabolismo , Regiões Promotoras Genéticas/genética , Genoma Humano , Proteínas de Ligação a DNA/metabolismo
7.
EMBO Rep ; 24(7): e56910, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37129998

RESUMO

Ribosome biogenesis proceeds along a multifaceted pathway from the nucleolus to the cytoplasm that is extensively coupled to several quality control mechanisms. However, the mode by which 5S ribosomal RNA is incorporated into the developing pre-60S ribosome, which in humans links ribosome biogenesis to cell proliferation by surveillance by factors such as p53-MDM2, is poorly understood. Here, we report nine nucleolar pre-60S cryo-EM structures from Chaetomium thermophilum, one of which clarifies the mechanism of 5S RNP incorporation into the early pre-60S. Successive assembly states then represent how helicases Dbp10 and Spb4, and the Pumilio domain factor Puf6 act in series to surveil the gradual folding of the nearby 25S rRNA domain IV. Finally, the methyltransferase Spb1 methylates a universally conserved guanine nucleotide in the A-loop of the peptidyl transferase center, thereby licensing further maturation. Our findings provide insight into the hierarchical action of helicases in safeguarding rRNA tertiary structure folding and coupling to surveillance mechanisms that culminate in local RNA modification.


Assuntos
RNA Ribossômico , Proteínas de Saccharomyces cerevisiae , Humanos , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/genética , RNA Ribossômico 5S/genética , RNA Ribossômico 5S/metabolismo , DNA Helicases/metabolismo , Ligação Proteica , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Nat Commun ; 14(1): 2730, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37169754

RESUMO

In actively translating 80S ribosomes the ribosomal protein eS7 of the 40S subunit is monoubiquitinated by the E3 ligase Not4 and deubiquitinated by Otu2 upon ribosomal subunit recycling. Despite its importance for translation efficiency the exact role and structural basis for this translational reset is poorly understood. Here, structural analysis by cryo-electron microscopy of native and reconstituted Otu2-bound ribosomal complexes reveals that Otu2 engages 40S subunits mainly between ribosome recycling and initiation stages. Otu2 binds to several sites on the intersubunit surface of the 40S that are not occupied by any other 40S-binding factors. This binding mode explains the discrimination against 80S ribosomes via the largely helical N-terminal domain of Otu2 as well as the specificity for mono-ubiquitinated eS7 on 40S. Collectively, this study reveals mechanistic insights into the Otu2-driven deubiquitination steps for translational reset during ribosome recycling/(re)initiation.


Assuntos
Proteínas Ribossômicas , Ribossomos , Microscopia Crioeletrônica , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/metabolismo
9.
Cell ; 186(10): 2282-2282.e1, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172570

RESUMO

Ribosome production is vital for every cell, and failure causes human diseases. It is driven by ∼200 assembly factors functioning along an ordered pathway from the nucleolus to the cytoplasm. Structural snapshots of biogenesis intermediates from the earliest 90S pre-ribosomes to mature 40S subunits unravel the mechanisms of small ribosome synthesis. To view this SnapShot, open or download the PDF.


Assuntos
Células Eucarióticas , Ribossomos , Humanos , Nucléolo Celular/metabolismo , Células Eucarióticas/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/metabolismo
10.
Mol Cell ; 83(10): 1588-1604.e5, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37080207

RESUMO

Gene expression in metazoans is controlled by promoter-proximal pausing of RNA polymerase II, which can undergo productive elongation or promoter-proximal termination. Integrator-PP2A (INTAC) plays a crucial role in determining the fate of paused polymerases, but the underlying mechanisms remain unclear. Here, we establish a rapid degradation system to dissect the functions of INTAC RNA endonuclease and phosphatase modules. We find that both catalytic modules function at most if not all active promoters and enhancers, yet differentially affect polymerase fate. The endonuclease module induces promoter-proximal termination, with its disruption leading to accumulation of elongation-incompetent polymerases and downregulation of highly expressed genes, while elongation-competent polymerases accumulate at lowly expressed genes and non-coding elements, leading to their upregulation. The phosphatase module primarily prevents the release of paused polymerases and limits transcriptional activation, especially for highly paused genes. Thus, both INTAC catalytic modules have unexpectedly general yet distinct roles in dynamic transcriptional control.


Assuntos
Monoéster Fosfórico Hidrolases , RNA Polimerase II , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Regulação da Expressão Gênica , Ativação Transcricional , Regulação para Cima , Transcrição Gênica
12.
Cancer Discov ; 13(2): 332-347, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36259929

RESUMO

The development and regulation of malignant self-renewal remain unresolved issues. Here, we provide biochemical, genetic, and functional evidence that dynamics in ribosomal RNA (rRNA) 2'-O-methylation regulate leukemia stem cell (LSC) activity in vivo. A comprehensive analysis of the rRNA 2'-O-methylation landscape of 94 patients with acute myeloid leukemia (AML) revealed dynamic 2'-O-methylation specifically at exterior sites of ribosomes. The rRNA 2'-O-methylation pattern is closely associated with AML development stage and LSC gene expression signature. Forced expression of the 2'-O-methyltransferase fibrillarin (FBL) induced an AML stem cell phenotype and enabled engraftment of non-LSC leukemia cells in NSG mice. Enhanced 2'-O-methylation redirected the ribosome translation program toward amino acid transporter mRNAs enriched in optimal codons and subsequently increased intracellular amino acid levels. Methylation at the single site 18S-guanosine 1447 was instrumental for LSC activity. Collectively, our work demonstrates that dynamic 2'-O-methylation at specific sites on rRNAs shifts translational preferences and controls AML LSC self-renewal. SIGNIFICANCE: We establish the complete rRNA 2'-O-methylation landscape in human AML. Plasticity of rRNA 2'-O-methylation shifts protein translation toward an LSC phenotype. This dynamic process constitutes a novel concept of how cancers reprogram cell fate and function. This article is highlighted in the In This Issue feature, p. 247.


Assuntos
Leucemia Mieloide Aguda , RNA Ribossômico , Humanos , Animais , Camundongos , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Leucemia Mieloide Aguda/patologia , Ribossomos/genética , Ribossomos/metabolismo , Metilação , Fenótipo , Células-Tronco Neoplásicas/metabolismo
13.
Nucleic Acids Res ; 50(20): 11924-11937, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321656

RESUMO

Biogenesis of the small ribosomal subunit in eukaryotes starts in the nucleolus with the formation of a 90S precursor and ends in the cytoplasm. Here, we elucidate the enigmatic structural transitions of assembly intermediates from human and yeast cells during the nucleoplasmic maturation phase. After dissociation of all 90S factors, the 40S body adopts a close-to-mature conformation, whereas the 3' major domain, later forming the 40S head, remains entirely immature. A first coordination is facilitated by the assembly factors TSR1 and BUD23-TRMT112, followed by re-positioning of RRP12 that is already recruited early to the 90S for further head rearrangements. Eventually, the uS2 cluster, CK1 (Hrr25 in yeast) and the export factor SLX9 associate with the pre-40S to provide export competence. These exemplary findings reveal the evolutionary conserved mechanism of how yeast and humans assemble the 40S ribosomal subunit, but reveal also a few minor differences.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas Ribossômicas , Subunidades Ribossômicas Menores de Eucariotos , Proteínas de Saccharomyces cerevisiae , Humanos , Caseína Quinase I/análise , Caseína Quinase I/metabolismo , Metiltransferases/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Cell Rep ; 41(8): 111684, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417864

RESUMO

Ribosome synthesis begins in the nucleolus with 90S pre-ribosome construction, but little is known about how the many different snoRNAs that modify the pre-rRNA are timely guided to their target sites. Here, we report a role for Cms1 in such a process. Initially, we discovered CMS1 as a null suppressor of a nop14 mutant impaired in Rrp12-Enp1 factor recruitment to the 90S. Further investigations detected Cms1 at the 18S rRNA 3' major domain of an early 90S that carried H/ACA snR83, which is known to guide pseudouridylation at two target sites within the same subdomain. Cms1 co-precipitates with many 90S factors, but Rrp12-Enp1 encircling the 3' major domain in the mature 90S is decreased. We suggest that Cms1 associates with the 3' major domain during early 90S biogenesis to restrict premature Rrp12-Enp1 binding but allows snR83 to timely perform its modification role before the next 90S assembly steps coupled with Cms1 release take place.


Assuntos
Nucléolo Celular , Ribossomos , Ribossomos/metabolismo , Nucléolo Celular/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Nucleolar Pequeno/metabolismo
15.
Nucleic Acids Res ; 50(20): 11916-11923, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36263816

RESUMO

The transition of the 90S to the pre-40S pre-ribosome is a decisive step in eukaryotic small subunit biogenesis leading to a first pre-40S intermediate (state Dis-C or primordial pre-40S), where the U3 snoRNA keeps the nascent 18S rRNA locally immature. We in vitro reconstitute the ATP-dependent U3 release from this particle, catalyzed by the helicase Dhr1, and follow this process by cryo-EM revealing two successive pre-40S intermediates, Dis-D and Dis-E. The latter has lost not only U3 but all residual 90S factors including the GTPase Bms1. In vitro remodeling likewise induced the formation of the central pseudoknot, a universally conserved tertiary RNA structure that comprises the core of the small subunit decoding center. Thus, we could structurally reveal a key tertiary RNA folding step that is essential to form the active 40S subunit.


Assuntos
Precursores de RNA , RNA Ribossômico 18S , RNA Nucleolar Pequeno , Subunidades Ribossômicas Menores de Eucariotos , Precursores de RNA/genética , RNA Ribossômico 18S/genética , RNA Nucleolar Pequeno/genética , Saccharomyces cerevisiae/genética , Conformação de Ácido Nucleico , Subunidades Ribossômicas Menores de Eucariotos/genética
16.
Nat Commun ; 13(1): 3041, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650207

RESUMO

Protein degradation, a major eukaryotic response to cellular signals, is subject to numerous layers of regulation. In yeast, the evolutionarily conserved GID E3 ligase mediates glucose-induced degradation of fructose-1,6-bisphosphatase (Fbp1), malate dehydrogenase (Mdh2), and other gluconeogenic enzymes. "GID" is a collection of E3 ligase complexes; a core scaffold, RING-type catalytic core, and a supramolecular assembly module together with interchangeable substrate receptors select targets for ubiquitylation. However, knowledge of additional cellular factors directly regulating GID-type E3s remains rudimentary. Here, we structurally and biochemically characterize Gid12 as a modulator of the GID E3 ligase complex. Our collection of cryo-EM reconstructions shows that Gid12 forms an extensive interface sealing the substrate receptor Gid4 onto the scaffold, and remodeling the degron binding site. Gid12 also sterically blocks a recruited Fbp1 or Mdh2 from the ubiquitylation active sites. Our analysis of the role of Gid12 establishes principles that may more generally underlie E3 ligase regulation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Ubiquitina-Proteína Ligases , Microscopia Crioeletrônica , Gluconeogênese/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
17.
Nucleic Acids Res ; 49(16): 9539-9547, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34403461

RESUMO

In Escherichia coli, elevated levels of free l-tryptophan (l-Trp) promote translational arrest of the TnaC peptide by inhibiting its termination. However, the mechanism by which translation-termination by the UGA-specific decoding release factor 2 (RF2) is inhibited at the UGA stop codon of stalled TnaC-ribosome-nascent chain complexes has so far been ambiguous. This study presents cryo-EM structures for ribosomes stalled by TnaC in the absence and presence of RF2 at average resolutions of 2.9 and 3.5 Å, respectively. Stalled TnaC assumes a distinct conformation composed of two small α-helices that act together with residues in the peptide exit tunnel (PET) to coordinate a single L-Trp molecule. In addition, while the peptidyl-transferase center (PTC) is locked in a conformation that allows RF2 to adopt its canonical position in the ribosome, it prevents the conserved and catalytically essential GGQ motif of RF2 from adopting its active conformation in the PTC. This explains how translation of the TnaC peptide effectively allows the ribosome to function as a L-Trp-specific small-molecule sensor that regulates the tnaCAB operon.


Assuntos
Proteínas de Escherichia coli/ultraestrutura , Fatores de Terminação de Peptídeos/ultraestrutura , Biossíntese de Proteínas , Ribossomos/ultraestrutura , Códon de Terminação/genética , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Conformação Proteica , Conformação Proteica em alfa-Hélice , Ribossomos/genética , Triptofano/genética
18.
Nat Commun ; 12(1): 4544, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315873

RESUMO

Assembly of the mitoribosome is largely enigmatic and involves numerous assembly factors. Little is known about their function and the architectural transitions of the pre-ribosomal intermediates. Here, we solve cryo-EM structures of the human 39S large subunit pre-ribosomes, representing five distinct late states. Besides the MALSU1 complex used as bait for affinity purification, we identify several assembly factors, including the DDX28 helicase, MRM3, GTPBP10 and the NSUN4-mTERF4 complex, all of which keep the 16S rRNA in immature conformations. The late transitions mainly involve rRNA domains IV and V, which form the central protuberance, the intersubunit side and the peptidyltransferase center of the 39S subunit. Unexpectedly, we find deacylated tRNA in the ribosomal E-site, suggesting a role in 39S assembly. Taken together, our study provides an architectural inventory of the distinct late assembly phase of the human 39S mitoribosome.


Assuntos
Ribossomos Mitocondriais/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Linhagem Celular , Códon sem Sentido/genética , Microscopia Crioeletrônica , RNA Helicases DEAD-box , Humanos , Metiltransferases/metabolismo , Ribossomos Mitocondriais/ultraestrutura , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/ultraestrutura , RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores/ultraestrutura
19.
Structure ; 29(8): 804-809.e5, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33909994

RESUMO

The abnormal amplification of a CAG repeat in the gene coding for huntingtin (HTT) leads to Huntington's disease (HD). At the protein level, this translates into the expansion of a polyglutamine (polyQ) stretch located at the HTT N terminus, which renders HTT aggregation prone by unknown mechanisms. Here we investigated the effects of polyQ expansion on HTT in a complex with its stabilizing interaction partner huntingtin-associated protein 40 (HAP40). Surprisingly, our comprehensive biophysical, crosslinking mass spectrometry and cryo-EM experiments revealed no major differences in the conformation of HTT-HAP40 complexes of various polyQ length, including 17QHTT-HAP40 (wild type), 46QHTT-HAP40 (typical polyQ length in HD patients), and 128QHTT-HAP40 (extreme polyQ length). Thus, HTT polyQ expansion does not alter the global conformation of HTT when associated with HAP40.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Proteínas Nucleares/metabolismo , Peptídeos/química , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , Células HEK293 , Humanos , Proteína Huntingtina/química , Espectrometria de Massas , Modelos Moleculares , Conformação Molecular , Proteínas Nucleares/química , Peptídeos/genética , Ligação Proteica
20.
Mol Cell ; 81(2): 293-303.e4, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33326748

RESUMO

Ribosome assembly is catalyzed by numerous trans-acting factors and coupled with irreversible pre-rRNA processing, driving the pathway toward mature ribosomal subunits. One decisive step early in this progression is removal of the 5' external transcribed spacer (5'-ETS), an RNA extension at the 18S rRNA that is integrated into the huge 90S pre-ribosome structure. Upon endo-nucleolytic cleavage at an internal site, A1, the 5'-ETS is separated from the 18S rRNA and degraded. Here we present biochemical and cryo-electron microscopy analyses that depict the RNA exosome, a major 3'-5' exoribonuclease complex, in a super-complex with the 90S pre-ribosome. The exosome is docked to the 90S through its co-factor Mtr4 helicase, a processive RNA duplex-dismantling helicase, which strategically positions the exosome at the base of 5'-ETS helices H9-H9', which are dislodged in our 90S-exosome structures. These findings suggest a direct role of the exosome in structural remodeling of the 90S pre-ribosome to drive eukaryotic ribosome synthesis.


Assuntos
RNA Helicases DEAD-box/química , Endorribonucleases/química , Exonucleases/química , Complexo Multienzimático de Ribonucleases do Exossomo/ultraestrutura , RNA Ribossômico 18S/química , Ribossomos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sítios de Ligação , Microscopia Crioeletrônica , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Exonucleases/genética , Exonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Modelos Moleculares , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estabilidade de RNA , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA