Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 465, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350261

RESUMO

Gastric cancer (GC) remains a significant health challenge due to its high mortality rate and the limited efficacy of current targeted therapies. A critical barrier in developing more effective treatments is the lack of understanding of specific mechanisms driving GC progression. This study investigates the role of Transient Receptor Potential Vanilloid 1 (TRPV1), a non-selective cation channel known for its high Ca2+ permeability and tumor-suppressive properties in gastrointestinal cancers. Specifically, we explore the impact of SUMOylation-a dynamic and reversible post-translational modification-on TRPV1's function in GC. We demonstrate that SUMOylation of TRPV1 inhibits cell proliferation and migration in MGC-803 and AGS GC cells. By mutating amino acids near TRPV1's existing SUMO motif (slKpE), we created a bidirectional SUMO motif (EψKψE) that enhances TRPV1 SUMOylation, resulting in further suppression of GC cell proliferation and migration. In vivo studies support these findings, showing that TRPV1 SUMOylation prevents spontaneous tumorigenesis in a mouse GC model. Further investigation reveals that TRPV1 SUMOylation increases the protein's membrane expression by inhibiting its interaction with the adaptor-related protein complex 2 mu 1 subunit (AP2M1). This elevated membrane expression leads to increased intracellular Ca2+ influx, activating the AMP-activated protein kinase (AMPK) pathway, which in turn inhibits the proliferation and migration of GC cells.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Gástricas , Sumoilação , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Camundongos , Membrana Celular/metabolismo
2.
J Clin Invest ; 134(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145452

RESUMO

T cells rewire their metabolic activities to meet the demand of immune responses, but how to coordinate the immune response by metabolic regulators in activated T cells is unknown. Here, we identified autocrine VEGF-B as a metabolic regulator to control lipid synthesis and maintain the integrity of the mitochondrial inner membrane for the survival of activated T cells. Disruption of autocrine VEGF-B signaling in T cells reduced cardiolipin mass, resulting in mitochondrial damage, with increased apoptosis and reduced memory development. The addition of cardiolipin or modulating VEGF-B signaling improved T cell mitochondrial fitness and survival. Autocrine VEGF-B signaling through GA-binding protein α (GABPα) induced sentrin/SUMO-specific protease 2 (SENP2) expression, which further de-SUMOylated PPARγ and enhanced phospholipid synthesis, leading to a cardiolipin increase in activated T cells. These data suggest that autocrine VEGF-B mediates a signal to coordinate lipid synthesis and mitochondrial fitness with T cell activation for survival and immune response. Moreover, autocrine VEGF-B signaling in T cells provides a therapeutic target against infection and tumors as well as an avenue for the treatment of autoimmune diseases.


Assuntos
Comunicação Autócrina , Cardiolipinas , Mitocôndrias , Transdução de Sinais , Linfócitos T , Fator B de Crescimento do Endotélio Vascular , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Animais , Camundongos , Comunicação Autócrina/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Cardiolipinas/imunologia , Cardiolipinas/metabolismo , Fator B de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/imunologia , Ativação Linfocitária , PPAR gama/metabolismo , PPAR gama/imunologia , PPAR gama/genética , Humanos
3.
Apoptosis ; 29(9-10): 1619-1631, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39068621

RESUMO

Glioblastoma multiforme (GBM) is a highly malignant brain tumor, and glioblastoma stem cells (GSCs) are the primary cause of GBM heterogeneity, invasiveness, and resistance to therapy. Sirtuin 3 (SIRT3) is mainly localized in the mitochondrial matrix and plays an important role in maintaining GSC stemness through cooperative interaction with the chaperone protein tumor necrosis factor receptor-associated protein 1 (TRAP1) to modulate mitochondrial respiration and oxidative stress. The present study aimed to further elucidate the specific mechanisms by which SIRT3 influences GSC stemness, including whether SIRT3 serves as an autophagy substrate and the mechanism of SIRT3 degradation. We first found that SIRT3 is enriched in CD133+ GSCs. Further experiments revealed that in addition to promoting mitochondrial respiration and reducing oxidative stress, SIRT3 maintains GSC stemness by epigenetically regulating CD133 expression via succinate. More importantly, we found that SIRT3 is degraded through the autophagy-lysosome pathway during GSC differentiation into GBM bulk tumor cells. GSCs are highly dependent on glutamine for survival, and in these cells, we found that glutamine deprivation triggers autophagic SIRT3 degradation to restrict CD133 expression, thereby disrupting the stemness of GSCs. Together our results reveal a novel mechanism by which SIRT3 regulates GSC stemness. We propose that glutamine restriction to trigger autophagic SIRT3 degradation offers a strategy to eliminate GSCs, which combined with other treatment methods may overcome GBM resistance to therapy as well as relapse.


Assuntos
Antígeno AC133 , Autofagia , Neoplasias Encefálicas , Epigênese Genética , Glioblastoma , Glutamina , Células-Tronco Neoplásicas , Sirtuína 3 , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Sirtuína 3/genética , Sirtuína 3/metabolismo , Antígeno AC133/metabolismo , Antígeno AC133/genética , Autofagia/genética , Glutamina/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/metabolismo , Mitocôndrias/genética , Animais , Camundongos , Proteólise , Diferenciação Celular
4.
Cell Oncol (Dordr) ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954215

RESUMO

PURPOSE: Esophageal squamous cell carcinoma (ESCC) is a prevalent tumor in the gastrointestinal tract, but our understanding of the molecular mechanisms underlying ESCC remains incomplete. Existing studies indicate that SUMO specific peptidase 1 (SENP1) plays a crucial role in the development and progression of various malignant tumors through diverse molecular mechanisms. However, the functional mechanism and clinical implications of SENP1 in the progression of ESCC remain unclear. METHODS: Bulk RNA-Sequencing (RNA-seq) was used to compare potential genes in the esophageal tissues of mice with ESCC to the control group. The up-regulated SENP1 was selected. The protein level of SENP1 in ESCC patient samples was analyzed by immunohistochemistry and western blot. The potential prognostic value of SENP1 on overall survival of ESCC patients was examined using tissue microarray analysis and the Kaplan-Meier method. The biological function was confirmed through in vitro and in vivo knockdown approaches of SENP1. The role of SENP1 in cell cycle progression and apoptosis of ESCC cells was analyzed by flow cytometry and western blot. The downstream signaling pathways regulated by SENP1 were investigated via using RNA-Seq. SENP1-associated proteins were identified through immunoprecipitation. Overexpression of Sirtuin 6 (SIRT6) wildtype and mutant was performed to investigate the regulatory role of SENP1 in ESCC progression in vitro. RESULTS: Our study discovered that SENP1 was upregulated in ESCC tissues and served as a novel prognostic factor. Moreover, SENP1 enhanced cell proliferation and migration of ESCC cell lines in vitro, as well as promoted tumor growth in vivo. Thymidine kinase 1 (TK1), Geminin (GMNN), cyclin dependent kinase 1(CDK1), and cyclin A2 (CCNA2) were identified as downstream genes of SENP1. Mechanistically, SENP1 deSUMOylated SIRT6 and subsequently inhibited SIRT6-mediated histone 3 lysine 56 (H3K56) deacetylation on those downstream genes. SIRT6 SUMOylation mutant (4KR) rescued the growth inhibition upon SENP1 depletion. CONCLUSIONS: SENP1 promotes the malignant progression of ESCC by inhibiting the deacetylase activity of SIRT6 pathway through deSUMOylation. Our findings suggest that SENP1 may serve as a valuable biomarker for prognosis and a target for therapeutic intervention in ESCC.

5.
Proc Natl Acad Sci U S A ; 121(22): e2314619121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776375

RESUMO

Humoral immunity depends on the germinal center (GC) reaction where B cells are tightly controlled for class-switch recombination and somatic hypermutation and finally generated into plasma and memory B cells. However, how protein SUMOylation regulates the process of the GC reaction remains largely unknown. Here, we show that the expression of SUMO-specific protease 1 (SENP1) is up-regulated in GC B cells. Selective ablation of SENP1 in GC B cells results in impaired GC dark and light zone organization and reduced IgG1-switched GC B cells, leading to diminished production of class-switched antibodies with high-affinity in response to a TD antigen challenge. Mechanistically, SENP1 directly binds to Paired box protein 5 (PAX5) to mediate PAX5 deSUMOylation, sustaining PAX5 protein stability to promote the transcription of activation-induced cytidine deaminase. In summary, our study uncovers SUMOylation as an important posttranslational mechanism regulating GC B cell response.


Assuntos
Linfócitos B , Cisteína Endopeptidases , Centro Germinativo , Fator de Transcrição PAX5 , Sumoilação , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Fator de Transcrição PAX5/metabolismo , Fator de Transcrição PAX5/genética , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Camundongos , Switching de Imunoglobulina , Humanos , Citidina Desaminase/metabolismo , Citidina Desaminase/genética , Imunidade Humoral , Camundongos Endogâmicos C57BL
6.
Cell Death Dis ; 15(2): 168, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395990

RESUMO

Glioblastoma (GBM) cells require large amounts of iron for tumor growth and progression, which makes these cells vulnerable to destruction via ferroptosis induction. Mitochondria are critical for iron metabolism and ferroptosis. Sirtuin-3 (SIRT3) is a deacetylase found in mitochondria that regulates mitochondrial quality and function. This study aimed to characterize SIRT3 expression and activity in GBM and investigate the potential therapeutic effects of targeting SIRT3 while also inducing ferroptosis in these cells. We first found that SIRT3 expression was higher in GBM tissues than in normal brain tissues and that SIRT3 protein expression was upregulated during RAS-selective lethal 3 (RSL3)-induced GBM cell ferroptosis. We then observed that inhibition of SIRT3 expression and activity in GBM cells sensitized GBM cells to RSL3-induced ferroptosis both in vitro and in vivo. Mechanistically, SIRT3 inhibition led to ferrous iron and ROS accumulation in the mitochondria, which triggered mitophagy. RNA-Sequencing analysis revealed that upon SIRT3 knockdown in GBM cells, the mitophagy pathway was upregulated and SLC7A11, a critical antagonist of ferroptosis via cellular import of cystine for glutathione (GSH) synthesis, was downregulated. Forced expression of SLC7A11 in GBM cells with SIRT3 knockdown restored cellular cystine uptake and consequently the cellular GSH level, thereby partially rescuing cell viability upon RSL3 treatment. Furthermore, in GBM cells, SIRT3 regulated SLC7A11 transcription through ATF4. Overall, our study results elucidated novel mechanisms underlying the ability of SIRT3 to protect GBM from ferroptosis and provided insight into a potential combinatorial approach of targeting SIRT3 and inducing ferroptosis for GBM treatment.


Assuntos
Ferroptose , Glioblastoma , Sirtuína 3 , Humanos , Sistema y+ de Transporte de Aminoácidos/genética , Cistina , Ferroptose/genética , Glioblastoma/genética , Glutationa , Indanos , Ferro , Mitofagia , Sirtuína 3/genética
7.
Adv Sci (Weinh) ; 11(15): e2305541, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351659

RESUMO

Non-small-cell lung cancer (NSCLC) is a highly lethal tumor that often develops resistance to targeted therapy. It is shown that Tank-binding kinase 1 (TBK1) phosphorylates AGO2 at S417 (pS417-AGO2), which promotes NSCLC progression by increasing the formation of microRNA-induced silencing complex (miRISC). High levels of pS417-AGO2 in clinical NSCLC specimens are positively associated with poor prognosis. Interestingly, the treatment with EGFR inhibitor Gefitinib can significantly induce pS417-AGO2, thereby increasing the formation and activity of oncogenic miRISC, which may contribute to NSCLC resistance to Gefitinib. Based on these, two therapeutic strategies is developed. One is jointly to antagonize multiple oncogenic miRNAs highly expressed in NSCLC and use TBK1 inhibitor Amlexanox reducing the formation of oncogenic miRISC. Another approach is to combine Gefitinib with Amlexanox to inhibit the progression of Gefitinib-resistant NSCLC. This findings reveal a novel mechanism of oncogenic miRISC regulation by TBK1-mediated pS417-AGO2 and suggest potential therapeutic approaches for NSCLC.


Assuntos
Aminopiridinas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética
8.
J Cell Physiol ; 239(3): e31080, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37450667

RESUMO

SUMOylation plays an essential role in diverse physiological and pathological processes. Identification of wild-type SUMO1-modification sites by mass spectrometry is still challenging. In this study, we produced a monoclonal SUMO1C-K antibody recognizing SUMOylated peptides and proposed an efficient streamline for identification of SUMOylation sites. We identified 471 SUMOylation sites in 325 proteins from five raw data. These identified sites exhibit a high positive rate when evaluated by mutation-verified SUMOylation sites. We identified many SUMOylated proteins involved in mitochondrial metabolism and non-membrane-bounded organelles formation. We proposed a SUMOylation motif, ΨKXD/EP, where proline is required for efficient SUMOylation. We further revealed SUMOylation of TFII-I was stimulated by growth signals and was required for nucleus-localization of p-ERK1/2. Mutation of SUMOylation sites of TFII-I suppressed tumor cell growth in vitro and in vivo. Taken together, we provided a strategy for personalized identification of wild-type SUMO1-modification sites and revealed the physiological significance of TFII-I SUMOylation in this study.


Assuntos
Neoplasias , Proteína SUMO-1 , Sumoilação , Fatores de Transcrição TFII , Humanos , Anticorpos Monoclonais , Espectrometria de Massas , Neoplasias/genética , Neoplasias/patologia , Peptídeos/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Sumoilação/genética , Fatores de Transcrição TFII/metabolismo
9.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834062

RESUMO

Lung adenocarcinoma (LUAD) is the most common lung cancer, which accounts for about 35-40% of all lung cancer patients. Despite therapeutic advancements in recent years, the overall survival time of LUAD patients still remains poor, especially KRAS mutant LUAD. Therefore, it is necessary to further explore novel targets and drugs to improve the prognos is for LUAD. Ferroptosis, an iron-dependent regulated cell death (RCD) caused by lipid peroxidation, has attracted much attention recently as an alternative target for apoptosis in LUAD therapy. Ferroptosis has been found to be closely related to LUAD at every stage, including initiation, proliferation, and progression. In this review, we will provide a comprehensive overview of ferroptosis mechanisms, its regulation in LUAD, and the application of targeting ferroptosis for LUAD therapy.


Assuntos
Adenocarcinoma de Pulmão , Ferroptose , Neoplasias Pulmonares , Morte Celular Regulada , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Apoptose
10.
Nat Commun ; 14(1): 5688, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709794

RESUMO

Small ubiquitin-like modifier (SUMO) typically conjugates to target proteins through isopeptide linkage to the ε-amino group of lysine residues. This posttranslational modification (PTM) plays pivotal roles in modulating protein function. Cofilins are key regulators of actin cytoskeleton dynamics and are well-known to undergo several different PTMs. Here, we show that cofilin-1 is conjugated by SUMO1 both in vitro and in vivo. Using mass spectrometry and biochemical and genetic approaches, we identify the N-terminal α-amino group as the SUMO-conjugation site of cofilin-1. Common to conventional SUMOylation is that the N-α-SUMOylation of cofilin-1 is also mediated by SUMO activating (E1), conjugating (E2), and ligating (E3) enzymes and reversed by the SUMO deconjugating enzyme, SENP1. Specific to the N-α-SUMOylation is the physical association of the E1 enzyme to the substrate, cofilin-1. Using F-actin co-sedimentation and actin depolymerization assays in vitro and fluorescence staining of actin filaments in cells, we show that the N-α-SUMOylation promotes cofilin-1 binding to F-actin and cofilin-induced actin depolymerization. This covalent conjugation by SUMO at the N-α amino group of cofilin-1, rather than at an internal lysine(s), serves as an essential PTM to tune cofilin-1 function during regulation of actin dynamics.


Assuntos
Actinas , Sumoilação , Lisina , Fatores de Despolimerização de Actina , Ubiquitina
11.
Mol Ther ; 31(10): 3052-3066, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37608549

RESUMO

Acute kidney injury (AKI) is a critical clinical condition that causes kidney fibrosis, and it currently lacks specific treatment options. In this research, we investigate the role of the SENP1-Sirt3 signaling pathway and its correlation with mitochondrial dysfunction in proximal tubular epithelial cells (PTECs) using folic acid (FA) and ischemia-reperfusion-induced (IRI) AKI models. Our findings reveal that Sirt3 SUMOylation site mutation (Sirt3 KR) or pharmacological stimulation (metformin) protected mice against AKI and subsequent kidney inflammation and fibrosis by decreasing the acetylation level of mitochondrial SOD2, reducing mitochondrial reactive oxygen species (mtROS), and subsequently restoring mitochondrial ATP level, reversing mitochondrial morphology and alleviating cell apoptosis. In addition, AKI in mice was similarly alleviated by reducing mtROS levels using N-acetyl-L-cysteine (NAC) or MitoQ. Metabolomics analysis further demonstrated an increase in antioxidants and metabolic shifts in Sirt3 KR mice during AKI, compared with Sirt3 wild-type (WT) mice. Activation of the AMPK pathway using metformin promoted the SENP1-Sirt3 axis and protected PTECs from apoptosis. Hence, the augmented deSUMOylation of Sirt3 in mitochondria, activated through the metabolism-related AMPK pathway, protects against AKI and subsequently mitigated renal inflammation and fibrosis through Sirt3-SOD2-mtROS, which represents a potential therapeutic target for AKI.

12.
Sci China Life Sci ; 66(1): 67-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881219

RESUMO

Group 2 innate lymphoid cells (ILC2s) play important tissue resident roles in anti-parasite immunity, allergic immune response, tissue homeostasis, and tumor immunity. ILC2s are considered tissue resident cells with little proliferation at steady state. Recent studies have shown that a subset of small intestinal ILC2s could leave their residing tissues, circulate and migrate to different organs, including lung, liver, mesenteric LN and spleen, upon activation. However, it remains unknown whether other ILC populations with migratory behavior exist. In this study, we find two major colon ILC2 populations with potential to migrate to the lung in response to IL-25 stimulation. One subset expresses IL-17A and resembles inflammatory ILC2s (iILC2s) but lacks CD27 expression, whereas the other expresses CD27 but not IL-17A. In addition, the IL-17A+ ILC2s express lower levels of CD127, CD25, and ST2 than CD27+ ILC2s, which express higher levels of IL-5 and IL-13. Surprisingly, we found that both colon ILC2 populations still maintained their colonic features of preferential expression of IL-17A and CD27, IL-5/IL-13, respectively. Together, our study identifies two migratory colon ILC2 subsets with unique surface markers and cytokine profiles which are critical in regulating lung and colon immunity and homeostasis.


Assuntos
Imunidade Inata , Interleucina-13 , Interleucina-5 , Linfócitos , Pulmão/patologia , Citocinas
13.
Cancers (Basel) ; 14(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36358651

RESUMO

Antioxidant transcription factor NRF2 plays a pivotal role in cell ferroptosis. KLK lung adenocarcinoma (LUAD) is a specific molecular subtype of Kras-mutant LUAD. The activation of mutant Kras in combination with the inactivation of Lkb1 and Keap1 abnormally increases NRF2 expression, while high NRF2 confers KLK LUAD cell resistance to ferroptosis. This study assessed the inhibition of NRF2-GSH axis to sensitize a small molecule RSL3 to induce KLK LUAD cell ferroptosis and then explored the underlying molecular mechanisms. The data showed that the NRF2-GSH inhibition sensitized RSL3 induction of KLK LUAD cell ferroptosis in vitro, while RSL3 treatment reduced level of NRF2 protein in KLK LUAD during ferroptosis. Moreover, RSL3 treatment inhibited activity of the NRF2-GSH signaling during in KLK LUAD cell ferroptosis in vitro and in vivo. Mechanistically, the RSL3 reduction of NRF2 expression was through the promotion of NRF2 ubiquitination in KLK LUAD cells. In addition, RSL3 was able to directly bind to USP11, a recently identified de-ubiquitinase of NRF2, and inactivate USP11 protein to induce NRF2 protein ubiquitination and degradation in KLK LUAD cells. These data revealed a novel mechanism of RSL3 induction in KLK LUAD cell ferroptosis by suppression of the USP11-NRF2-GSH signaling. Future study will confirm RSL3 as a novel therapeutic approach in control of KLK lung adenocarcinoma.

14.
Cell Death Dis ; 13(10): 899, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289190

RESUMO

Mitophagy is a vital process that controls mitochondria quality, dysregulation of which can promote cancer. Oncoprotein mucin 1 (MUC1) targets mitochondria to attenuate drug-induced apoptosis. However, little is known about whether and how MUC1 contributes to mitochondrial homeostasis in cancer cells. We identified a novel role of MUC1 in promoting mitophagy. Increased mitophagy is coupled with the translocation of MUC1 to mitochondria, where MUC1 interacts with and induces degradation of ATPase family AAA domain-containing 3A (ATAD3A), resulting in protection of PTEN-induced kinase 1 (Pink1) from ATAD3A-mediated cleavage. Interestingly, MUC1-induced mitophagy is associated with increased oncogenicity of cancer cells. Similarly, inhibition of mitophagy significantly suppresses MUC1-induced cancer cell activity in vitro and in vivo. Consistently, MUC1 and ATAD3A protein levels present an inverse relationship in tumor tissues of breast cancer patients. Our data validate that MUC1/ATAD3A/Pink1 axis-mediated mitophagy constitutes a novel mechanism for maintaining the malignancy of cancer cells, providing a novel therapeutic approach for MUC1-positive cancers.


Assuntos
Neoplasias da Mama , Mitofagia , Feminino , Humanos , Adenosina Trifosfatases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Neoplasias da Mama/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mucina-1/genética , Mucina-1/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Ageing Res Rev ; 81: 101739, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36182084

RESUMO

Sarcopenia is characterized by a progressive loss of skeletal muscle mass and function with aging. Recently, sarcopenia has been shown to be closely related with gut microbiota. Strategies such as probiotics and fecal microbiota transplantation have shown potential to ameliorate the muscle loss. This review will focus on the age-related sarcopenia, in particular on the relationship between gut microbiota and age-related sarcopenia, how gut microbiota is engaged in sarcopenia, and the potential role of gut microbiota in the treatment of age-related sarcopenia.


Assuntos
Microbioma Gastrointestinal , Sarcopenia , Envelhecimento/fisiologia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Humanos , Músculo Esquelético/fisiologia
16.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955415

RESUMO

Sirtuin 3 (SIRT3) deacetylase is a key regulator for chemoresistance in acute myeloid leukemia (AML) cells due to its capability of modulating mitochondrial metabolism and reactive oxygen species (ROS). SIRT3 is de-SUMOylated by SUMO-specific peptidase 1 (SENP1), which enhances its deacetylase activity. Therefore, dysregulation of SIRT3 SUMOylation may lead to fortified chemoresistance in AML. Indeed, SIRT3 de-SUMOylation was induced by chemotherapeutic agents, which in turn, exacerbated resistance against chemotherapies in AML by activating SIRT3 via preventing its proteasome degradation. Furthermore, RNA-seq revealed that expression of a collection of genes was altered by SIRT3 de-SUMOylation including inhibition of transcription factor Hes Family BHLH Transcription Factor 1 (HES1), a downstream substrate of Notch1 signaling pathway, leading to increased fatty acids oxidation (FAO). Moreover, the SENP1 inhibitor momordin-Ic or HES1 overexpression synergized with cytarabine to eradicate AML cells in vitro and in xenograft mouse models. In summary, the current study revealed a novel role of SIRT3 SUMOylation in the regulation of chemoresistance in AML via HES1-dependent FAO and provided a rationale for SIRT3 SUMOylation and FAO targeted interventions to improve chemotherapies in AML.


Assuntos
Leucemia Mieloide Aguda , Sirtuína 3 , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Ácidos Graxos/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sumoilação , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
17.
Cell Death Dis ; 13(7): 640, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869062

RESUMO

Our previous studies show that the mitotic phosphorylation of SUMO-specific protease 3 (SENP3) can inhibit its de-SUMOylation activity in G2/M phase of the cell cycle. Inhibition of SENP3 plays a critical role in the correct separation of sister chromatids in mitosis. The mutation of mitotic SENP3 phosphorylation causes chromosome instability and promotes tumorigenesis. In this study, we find that the mutation of mitotic SENP3 phosphorylation in tumor cells can suppress tumor growth in immune-competent mouse model. We further detect an increase of CD8+ T cell infiltration in the tumors, which is essential for the anti-tumor effect in immune-competent mouse model. Moreover, we find that mitotic SENP3 activation increases micronuclei formation, which can activate cGAS signaling-dependent innate immune response. We confirmed that cGAS signaling mediates the mitotic SENP3 activation-induced anti-tumor immunity. We further show that p53 responding to DNA damage activates mitotic SENP3 by inhibiting phosphorylation, and further increases cellular senescence as well as the related innate immune response in tumor cells. Furthermore, TCGA database demonstrates that the SENP3 expression positively correlates with the induction of innate immune response as well as the survival of the p53 mutant pancreatic cancer patients. Together, these data reveal that mitotic SENP3 activation in tumor cells can promote host anti-tumor immune response by coupling with cGAS signaling.


Assuntos
Neoplasias , Peptídeo Hidrolases , Animais , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Camundongos , Neoplasias/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Peptídeo Hidrolases/metabolismo , Sumoilação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Cell Rep ; 39(11): 110972, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705043

RESUMO

The molecular mechanism underlying the functional interaction between H1R and TRPV1 remains unclear. We show here that H1R directly binds to the carboxy-terminal region of TRPV1 at residues 715-725 and 736-749. Cell-penetrating peptides containing these sequences suppress histamine-induced scratching behavior in a cheek injection model. The H1R-TRPV1 binding is kept at a minimum at rest in mouse trigeminal neurons due to TRPV1 SUMOylation and it is enhanced upon histamine treatment through a transient TRPV1 deSUMOylation. The knockin of the SUMOylation-deficient TRPV1K823R mutant in mice leads to constitutive enhancement of H1R-TRPV1 binding, which exacerbates scratching behaviors induced by histamine. Conversely, SENP1 conditional knockout in sensory neurons enhances TRPV1 SUMOylation and suppresses the histamine-induced scratching response. In addition to interfering with binding, TRPV1 SUMOylation promotes H1R degradation through ubiquitination. Our work unveils the molecular mechanism of histaminergic itch by which H1R directly binds to deSUMOylated TRPV1 to facilitate the transduction of the pruritogen signal to the scratching response.


Assuntos
Histamina , Prurido , Receptores Histamínicos H1 , Sumoilação , Animais , Histamina/metabolismo , Camundongos , Prurido/induzido quimicamente , Prurido/metabolismo , Receptores Histamínicos H1/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
19.
Blood Adv ; 6(17): 4924-4935, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35728063

RESUMO

The short life span of platelets is a major challenge to platelet transfusion services because of the lack of effective intervention. Here, we found that the accumulation of long-chain acylcarnitines (LCACs) is responsible for mitochondrial damage and platelet storage lesion. Further studies showed that the blockade of fatty acid oxidation and the activation of AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase/carnitine palmitoyltransferase 1 (CPT1) pathways that promote fatty acid metabolism are important reasons for the accumulation of LCACs. The excessive accumulation of LCACs can cause mitochondrial damage and a short life span of stored platelets. The mechanism study elucidated that NAD+ exhaustion and the subsequent decrease in sirtuin 3 (Sirt3) activity caused an increase in the level of CPT2 K79 acetylation, which is the primary cause of the blockade of fatty acid oxidation and the accumulation of LCACs. Blocking LCAC generation with the inhibitors of AMPK or CPT1, the agonists of Sirt3, and antioxidants tremendously retarded platelet storage lesion in vitro and prolonged the survival of stored platelets in vivo posttransfusion with single or combined use. In summary, we discovered that CPT2 acetylation attenuates fatty acid oxidation and exacerbates platelet storage lesion and may serve as a new target for improving platelet storage quality.


Assuntos
Sirtuína 3 , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilação , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/metabolismo , Longevidade , Sirtuína 3/metabolismo
20.
Oncogene ; 41(22): 3064-3078, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35461328

RESUMO

Aberrant overexpression of mucin 1 (MUC1) and human epidermal growth factor receptor 2 (HER2) are often observed in breast cancer. However, the role of concomitant MUC1/HER2 in the development of breast cancer has not been fully illustrated. Following analysis of public microarray datasets that revealed a correlation between double MUC1 and HER2 positivity and a worse clinical outcome, we generated a mouse model overexpressing both Her2 and MUC1 cytoplasmic domain (MUC1-CD) to investigate their interaction in mammary carcinogenesis. Coexpression of Her2 and MUC1-CD conferred a growth advantage and promoted the development of spontaneous mammary tumors. Genomic analysis revealed that enforced expression of MUC1-CD and Her2 induces mammary tumor lineage plasticity, which is supported by gene reprogramming and mammary stem cell enrichment. Through gain- and loss-of-function strategies, we show that coexpression of Her2 and MUC1-CD is associated with downregulation of tricarboxylic acid (TCA) cycle genes in tumors. Importantly, the reduction in TCA cycle genes induced by MUC1-CD was found to be significantly connected to poor prognosis in HER2+ breast cancer patients. In addition, MUC1 augments the Her2 signaling pathway by inducing Her2/Egfr dimerization. These findings collectively demonstrate the vital role of MUC1-CD/Her2 collaboration in shaping the mammary tumor landscape and highlight the prognostic and therapeutic implications of MUC1 in patients with HER2+ breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Mucina-1/metabolismo , Animais , Neoplasias da Mama/patologia , Transformação Celular Neoplásica , Feminino , Humanos , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Camundongos , Mucina-1/genética , Receptor ErbB-2/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA