Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 130: 108784, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692127

RESUMO

Deep eutectic solvents (DESs) composed of choline chloride (ChCl) and ascorbic acid (AA) were investigated using the molecular dynamics (MD) simulations. The analyses of the configuration, radial distribution function (RDFs), coordination number, spatial distribution function (SDFs), interaction energies, hydrogen bond number, and self-diffusion coefficient of the ChCl/AA binary systems of different concentrations showed that the stability of the hydrogen bond network and the mutual attraction between systems were the strongest at the experimental eutectic concentration (molar ratio of 2:1). In our simulated temperature range from 303.15 to 353.15 K, the hydrogen bonding network of ChCl/AA DES does not undergo considerable alterations, indicating that its stability was insensitive to temperature. In addition, the influence of the water content on the ChCl/AA DES system was further investigated. The simulated results revealed that the water molecules could disrupt the formation of the hydrogen bonding network by occupyin positions that are essential for the formation of hydrogen bonds within the DES system.


Assuntos
Ácido Ascórbico , Colina , Solventes Eutéticos Profundos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Colina/química , Ácido Ascórbico/química , Solventes Eutéticos Profundos/química , Água/química , Solventes/química , Temperatura
2.
Food Chem X ; 21: 101113, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38292680

RESUMO

The present study used a comprehensive analysis combining headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) to investigate changes in volatile compounds and phospholipid molecules in grilled lambs. The results revealed 19 key volatile compounds (OAV > 1) involved in the grilling process of lambs. Additionally, UPLC-ESI-MS/MS analysis detected 142 phospholipid molecules in grilled lamb, with phosphatidylcholine exhibiting the highest content (36.62 %), followed by phosphatidyl ethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidyl glycerol, and phosphatidic acid. Through partial least squares analysis, 63 key differential phospholipids were identified. Principal component analysis of the key differential phospholipids and volatile compounds indicated that phosphatidylcholine and phosphatidyl ethanolamine phospholipids are the key substrates in forming volatile compounds in grilled lambs. This information is essential for precisely regulating the flavor profile, enhancing the grilling process, and minimizing the production of harmful compounds in grilled meat products.

3.
Food Chem ; 442: 138406, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219571

RESUMO

The present study aimed to elucidate the pathway of pigment formation and identify the source of antioxidant activity during sugar smoking. Building upon previous research, this investigation replicated the sucrose cleavage process involved in sugar-smoking through model reactions to obtain distinct model reaction products. The products were analyzed using various techniques such as ultraviolet-visible spectrometry, Fourier-transform infrared spectroscopy, high-performance liquid chromatography, and high-performance liquid chromatography-tandem mass spectrometry. The findings revealed that the pyrolysis of sucrose at 330 °C yielded glucose and fructose, with fructose pyrolysis producing significantly more 5-HMF than glucose. Moreover, the antioxidant capacity of 5-HMF was found to make a substantial contribution. The primary source of 5-HMF was identified as fructose resulting from the cleavage of sucrose at 330 °C, while the primary pathway for the formation of the sugar-smoking pigment 5-GGMF was attributed to the intermolecular dehydration of 5-HMF and glucose at 150 °C.


Assuntos
Antioxidantes , Açúcares , Carboidratos/química , Glucose/química , Sacarose/química , Frutose/química , Fumar , Furaldeído/química
4.
Eur J Med Chem ; 265: 116061, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154256

RESUMO

A series of ß-carboline derivatives were designed and synthesized by introducing the chalcone moiety into the harmine. The synthesized derivatives were evaluated their anti-proliferative activities against six human cancer cell lines (MCF-7, MDA-MB-231, HepG2, HT29, A549, and PC-3) and one normal cell line (L02). Among them, compound G11 exhibited the potent anti-proliferative activity against MCF-7 cell line, with an IC50 value of 0.34 µM. Further biological studies revealed that compound G11 inhibited colony formation of MCF-7 cells, suppressed MCF-7 cell migration by downregulating migration-associated protein MMP-2. In addition, it could induce apoptosis of MCF-7 cells by downregulating Bcl-2 and upregulating Cleaved-PARP, Bax, and phosphorylated Bim proteins. Furthermore, compound G11 can act as a Topo I inhibitor, affecting DNA synthesis and transcription, thereby inhibiting cancer cell proliferation. Moreover, compound G11 inhibited tumor growth in 4T1 syngeneic transplant mice with an inhibition rate of 43.19 % at a dose of 10 mg/kg, and 63.87 % at 20 mg/kg, without causing significant toxicity to the mice or their organs, achieving the goal of reduced toxicity and increased efficacy. All these results indicate of G11 has enormous potential as an anti-tumor agent and merits further investigation.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Harmina/farmacologia , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Antineoplásicos/farmacologia , Células MCF-7 , Proliferação de Células , Apoptose , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
5.
Front Plant Sci ; 13: 996121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275601

RESUMO

The leaf microbiota plays a key role in plant development, but a detailed mechanism of microbe-plant relationships remains elusive. Many genome-wide association studies (GWAS) have begun to map leaf microbes, but few have systematically characterized the genetics of how microbes act and interact. Previously, we integrated behavioral ecology and game theory to define four types of microbial interactions - mutualism, antagonism, aggression, and altruism, in a microbial community assembly. Here, we apply network mapping to identify specific plant genes that mediate the topological architecture of microbial networks. Analyzing leaf microbiome data from an Arabidopsis GWAS, we identify several heritable hub microbes for leaf microbial communities and detect 140-728 SNPs (Single nucleotide polymorphisms) responsible for emergent properties of microbial network. We reconstruct Bayesian genetic networks from which to identify 22-43 hub genes found to code molecular pathways related to leaf growth, abiotic stress responses, disease resistance and nutrition uptake. A further path analysis visualizes how genetic variants of Arabidopsis affect its fecundity through the internal workings of the leaf microbiome. We find that microbial networks and their genetic control vary along spatiotemporal gradients. Our study provides a new avenue to reveal the "endophenotype" role of microbial networks in linking genotype to end-point phenotypes in plants. Our integrative theory model provides a powerful tool to understand the mechanistic basis of structural-functional relationships within the leaf microbiome and supports the need for future research on plant breeding and synthetic microbial consortia with a specific function.

6.
Front Endocrinol (Lausanne) ; 13: 986848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105399

RESUMO

Background: Vitamin D plays an important role in reproduction. Evidence shown that free 25-hydroxyvitamin D (25(OH)VitD) was more accurate than total 25(OH)VitD in reflecting the status of 25(OH)VitD during pregnancy. However, the relationship between free 25(OH)VitD and female fertility parameters has not been reported yet. Therefore, this study aims to compare the correlation of free and total 25(OH)VitD with fertility parameters in infertility females undergoing in vitro fertilization and embryo transfer (IVF-ET) or intracytoplasmic sperm injection (ICSI). Methods: According to the inclusion and exclusion criteria, 2569 infertility patients who received IVF-ET or ICSI treatment for the first time participated in this study. Five milliliter peripheral blood samples of the patients were collected on the day before embryo transfer (ET). Enzyme linked immunosorbent assay (ELISA) kits was used to detect free 25(OH)VitD and total 25(OH)VitD, and clinical information was collected. Spearman's rho was used to evaluate the association between the variables. Results: The median (IQR) of free 25(OH)VitD was 4.71 (4.11-5.31) pg/mL and total 25(OH)VitD was 19.54 (16.52-22.83) ng/m. The correlation between them, however, was week (rho=0.311). Compared to total 25(OH)VitD, free 25(OH)VitD was slightly better correlated with basal follicle-stimulating hormone (FSH) (rho=0.041, P=0.036), basal estradiol (E2) (rho=0.089, P<0.001), anti-Müllerian hormone (AMH) (rho=-0.057, P=0.004), antral follicle count (AFC) (rho=-0.053, P=0.007), E2 (rho=-0.080, P<0.001), number of oocytes retrieval (rho=-0.079, P<0.001) and progesterone (P)/E2 on hCG trigger day (rho=0.081, P<0.001). Conclusions: Overall, there was only a rather weak correlation of free as well as total 25(OH)VitD with human endocrine and functional fertility parameters in women undergoing IVF/ICSI. Neither free nor total 25(OH)VitD seems to play a major role in human embryo implantation.


Assuntos
Infertilidade , Injeções de Esperma Intracitoplásmicas , Feminino , Fertilidade , Fertilização in vitro , Humanos , Infertilidade/terapia , Masculino , Gravidez , Sêmen , Vitamina D , Vitaminas
7.
Sci Total Environ ; 838(Pt 4): 156334, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660444

RESUMO

Water microorganisms that have distinct contributions to community dynamics, including many rare taxa and few abundant taxa, are crucial to the wetland ecosystem functions. In this study, we comprehensively investigated the diversity patterns and assembly processes of rare and abundant taxa to strengthen our understanding of ecosystem function and diversity in a wetland system. The results showed that TN and NH3-N were the most significant factors affecting the community structure in this wetland. Functional Annotation of Prokaryotic Taxa (FAPROTAX) revealed that functions associated with nitrogen removal were the most prevalent metabolic pathways in samples of regenerated wetland (RW). Co-occurrence network analysis revealed that nonrare taxa exhibited more interactions with rare taxa than with conspecifics and some microbial hubs belonged to rare taxa, which might play an instrumental role in maintaining the stability of the community structure. We found that the assembly of rare taxa with a lower niche breadth was mainly governed by homogeneous selection, implying that their higher sensitivity of these to environmental disturbances and changes in TN played significant roles in community assembly of rare taxa. In contrast, the assembly of abundant taxa with higher niche breadth was dominated by stochastic processes (undominated process and dispersal limitation) indicating that abundant taxa had greater responsibility for maintaining community structure when exposed to environmental fluctuations. These results broaden our understanding of the microbial structure, interactions and ecological assembly mechanisms underlying microbial dynamics in aquatic ecosystems, which are crucial for the management of microorganisms in the wetlands.


Assuntos
Ecossistema , Áreas Alagadas , Bactérias , Nitrogênio
8.
Clin Transl Med ; 12(5): e822, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35593206

RESUMO

Due to the complex physiological structure, microenvironment and multiple physiological barriers, traditional anti-cancer drugs are severely restricted from reaching the tumour site. Cell-penetrating peptides (CPPs) are typically made up of 5-30 amino acids, and can be utilised as molecular transporters to facilitate the passage of therapeutic drugs across physiological barriers. Up to now, CPPs have widely been used in many anti-cancer treatment strategies, serving as an excellent potential choice for oncology treatment. However, their drawbacks, such as the lack of cell specificity, short duration of action, poor stability in vivo, compatibility problems (i.e. immunogenicity), poor therapeutic efficacy and formation of unwanted metabolites, have limited their further application in cancer treatment. The cellular uptake mechanisms of CPPs involve mainly endocytosis and direct penetration, but still remain highly controversial in academia. The CPPs-based drug delivery strategy could be improved by clever design or chemical modifications to develop the next-generation CPPs with enhanced cell penetration capability, stability and selectivity. In addition, some recent advances in targeted cell penetration that involve CPPs provide some new ideas to optimise CPPs.


Assuntos
Peptídeos Penetradores de Células , Neoplasias , Transporte Biológico , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Sistemas de Liberação de Medicamentos , Endocitose , Humanos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
9.
Int J Obes (Lond) ; 46(1): 202-210, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628467

RESUMO

OBJECTIVE: To investigate the impact of body mass index (BMI) on the success rate and prenatal outcomes of fresh embryo transfer in women undergoing their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment. METHODS: It is a post-hoc analysis of a prospective observational cohort study. 2569 Chinese women were grouped in quintiles of BMI and according to the official Chinese classification of body weight. IVF/ICSI and pregnancy outcomes were compared between groups. RESULTS: BMI was not associated with IVF/ICSI pregnancy outcomes including hCG positive rate, clinical pregnancy rate, implantation rate, ectopic pregnancy rate, ongoing pregnancy rate, early miscarriage rate, and live birth rate. However, it was negatively related to some pregnancy complications such as gestational diabetes mellitus (GDM) and hypertension. Additionally, the proportion of Cesarean-section was increased with BMI. As for prenatal outcomes, the current results showed no statistical difference in the number of male and female newborn, the proportion of low live birth weight (<2500 g), macrosomia (≥4000 g) (both in all live birth and full-term live birth), and premature delivery (<37 weeks). CONCLUSIONS: The current study showed that BMI was not associated with embryo transfer outcomes after fresh embryo transfer in women undergoing their first IVF/ICSI treatment, whereas BMI was associated with GDM and gestational hypertension.


Assuntos
Índice de Massa Corporal , Transferência Embrionária/normas , Fertilização in vitro/normas , Sobrepeso/complicações , Adulto , Estudos de Coortes , Transferência Embrionária/métodos , Transferência Embrionária/estatística & dados numéricos , Feminino , Fertilização in vitro/métodos , Fertilização in vitro/estatística & dados numéricos , Humanos , Estudos Longitudinais , Masculino , Sobrepeso/fisiopatologia , Gravidez , Resultado da Gravidez , Estudos Prospectivos
10.
PLoS One ; 13(8): e0202472, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138340

RESUMO

Training systems generally alter tree architecture, which modulates light microclimate within the canopy, for the purpose of improving photosynthetic efficiency and fruit quality. Gene expression quantification is one of the most important methods for exploring the molecular mechanisms underlying the influence of training systems on pear photosynthesis, and suitable reference genes for gene expression normalization are a prerequisite for this method. In this study, the expression stability of nine common and four novel candidate genes were evaluated in 14 different pear leaf samples in two training systems, including those at four developmental stages (training_period) and from different parts of the trees (training_space), using two distinct algorithms, geNorm and NormFinder. Our results revealed that SKD1 (Suppressor of K+ Transport Growth Defect1)/ YLS8 (Yellow Leaf Specific 8) and ARM (Armadillo) were the most stable single reference genes for the 'training_period' and 'training_space' subsets, respectively, although these single genes were not as stable as the optimal pairs of reference genes, SKD1+YLS8 and ARM+YLS8, respectively. Furthermore, the expression levels of the PpsAPX (Ascorbate peroxidase) gene showed that the arbitrary use of reference genes without previous testing could lead to misinterpretation of data. This work constitutes the first systematic analysis regarding the selection of superior reference genes in training system studies, facilitating the elucidation of gene function in pear and providing valuable information for similar studies in other higher plants.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta , Proteínas de Plantas , Pyrus , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Pyrus/genética , Pyrus/metabolismo
11.
Front Plant Sci ; 8: 1694, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033966

RESUMO

Magnesium protoporphyrin IX methyltransferase (ChlM) catalyzes the formation of magnesium protoporphyrin IX monomethylester (MgPME) from magnesium protoporphyrin IX (MgP) in the chlorophyll synthesis pathway. However, no ChlM gene has yet been identified and studied in monocotyledonous plants. In this study, a spontaneous mutant, yellow-green leaf 18 (ygl18), was isolated from rice (Oryza sativa). This mutant showed yellow-green leaves, decreased chlorophyll level, and climate-dependent growth differences. Map-based cloning of this mutant identified the YGL18 gene LOC_Os06g04150. YGL18 is expressed in green tissues, especially in leaf organs, where it functions in chloroplasts. YGL18 showed an amino-acid sequence similarity to that of ChlM from different photosynthetic organisms. In vitro enzymatic assays demonstrated that YGL18 performed ChlM enzymatic activity, but ygl18 had nearly lost all ChlM activity. Correspondingly, the substrate MgP was largely accumulated while the product MgPME was reduced in ygl18 leaves. YGL18 is required for light-dependent and photoperiod-regulated chlorophyll synthesis. The retarded growth of ygl18 mutant plants was caused by the high light intensity. Moreover, the higher light intensity and longer exposure in high light intensity even made the ygl18 plants be more susceptible to death. Based on these results, it is suggested that YGL18 plays essential roles in light-related chlorophyll synthesis and light intensity-involved plant growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA