Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.888
Filtrar
1.
Phys Med Biol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38759677

RESUMO

OBJECTIVE: Deep learning algorithms have demonstrated impressive performance by leveraging large labeled data. However, acquiring pixel-level annotations for medical image analysis, especially in segmentation tasks, is both costly and time-consuming, posing challenges for supervised learning techniques. Existing semi-supervised methods tend to underutilize representations of unlabeled data and handle labeled and unlabeled data separately, neglecting their interdependencies. APPROACH: To address this issue, we introduce the Data-Augmented Attention-Decoupled Contrastive model (DADC). This model incorporates an attention decoupling module and utilizes contrastive learning to effectively distinguish foreground and background, significantly improving segmentation accuracy. Our approach integrates an augmentation technique that merges information from both labeled and unlabeled data, notably boosting network performance, especially in scenarios with limited labeled data. MAIN RESULTS: We conducted comprehensive experiments on the ABUS dataset and the results demonstrate that DADC outperforms existing segmentation methods in terms of segmentation performance.

3.
J Appl Clin Med Phys ; : e14397, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773719

RESUMO

BACKGROUND: CT-image segmentation for liver and hepatic vessels can facilitate liver surgical planning. However, time-consuming process and inter-observer variations of manual segmentation have limited wider application in clinical practice. PURPOSE: Our study aimed to propose an automated deep learning (DL) segmentation algorithm for liver and hepatic vessels on portal venous phase CT images. METHODS: This retrospective study was performed to develop a coarse-to-fine DL-based algorithm that was trained, validated, and tested using private 413, 52, and 50 portal venous phase CT images, respectively. Additionally, the performance of the DL algorithm was extensively evaluated and compared with manual segmentation using an independent clinical dataset of preoperative contrast-enhanced CT images from 44 patients with hepatic focal lesions. The accuracy of DL-based segmentation was quantitatively evaluated using the Dice Similarity Coefficient (DSC) and complementary metrics [Normalized Surface Dice (NSD) and Hausdorff distance_95 (HD95) for liver segmentation, Recall and Precision for hepatic vessel segmentation]. The processing time for DL and manual segmentation was also compared. RESULTS: Our DL algorithm achieved accurate liver segmentation with DSC of 0.98, NSD of 0.92, and HD95 of 1.52 mm. DL-segmentation of hepatic veins, portal veins, and inferior vena cava attained DSC of 0.86, 0.89, and 0.94, respectively. Compared with the manual approach, the DL algorithm significantly outperformed with better segmentation results for both liver and hepatic vessels, with higher accuracy of liver and hepatic vessel segmentation (all p < 0.001) in independent 44 clinical data. In addition, the DL method significantly reduced the manual processing time of clinical postprocessing (p < 0.001). CONCLUSIONS: The proposed DL algorithm potentially enabled accurate and rapid segmentation for liver and hepatic vessels using portal venous phase contrast CT images.

4.
Heliyon ; 10(9): e29651, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38698974

RESUMO

Objective: Competitive endogenous RNA (ceRNA) networks have uncovered a novel mode of RNA interaction, and are implicated in various biological processes and the pathogenesis of IS. This study aimed to explore the potential mechanisms underlying the ceRNA network in IS. Methods: Four public datasets containing lncRNA and mRNA (GSE22255 and GSE16561) and miRNA (GSE55937 and GSE43618) expression profiles from the GEO database were systematically analyzed to explore the role of RNAs in ischemic stroke (IS). Differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs), and miRNAs (DEmiRNAs) between IS and normal control samples were identified. LncRNA-miRNA and miRNA-mRNA interactions were predicted, and the competing endogenous RNA (ceRNA) regulatory network was constructed using the Cytoscape software. The correlation between the RNAs in the ceRNA network and the clinical features of the samples was evaluated. Finally, principal component analysis was performed on the RNAs that constitute the ceRNA regulatory network, and their differential expression and principal component relationships among different types of samples were observed. Results: A total of 224 DEmRNAs, 7 DEmiRNAs, and four DElncRNAs related to IS in four datasets were identified. Then, through target gene prediction, a lncRNA-miRNA-mRNA ceRNA network that contained 3 DElncRNAs, 2 DEmiRNAs, and 24 DEmRNAs was constructed. Correlations of the clinical characteristics showed that PART1 and SERPINH1 were related to clinical diseases, WNK1 was related to lifestyle, and seven RNAs were related to age. PCA results indicate that three principal components of PC1, PC2, and PC3 can clearly distinguish between control and IS samples. Conclusion: Overall, we constructed a ceRNA network in IS, which could offer insights into the molecular mechanism and potential prognostic biomarkers for further research.

5.
Nat Commun ; 15(1): 4347, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773146

RESUMO

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Astrócitos , Transtorno Depressivo Maior , Camundongos Knockout , Animais , Astrócitos/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Camundongos , Humanos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/patologia , Masculino , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Estresse Psicológico/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Comportamento Animal , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Depressão/metabolismo , Depressão/genética , Adulto , Transmissão Sináptica , Pessoa de Meia-Idade
6.
Chem Commun (Camb) ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764410

RESUMO

Structurally symmetric dyes using functionalized fluorenes and benzotriazole as the main building moieties have been synthesized and found to exhibit efficient dual-state emission (DSE) and interesting two-wavelength or dual amplified spontaneous emission (dual-ASE) behaviors in the solution phase, which may benefit the development of organic gain materials with dual-wavelength amplification.

7.
Orthop Surg ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766812

RESUMO

OBJECTIVE: Thoracolumbar fractures are one of the most common fractures in clinical practice. Surgical intervention is recommended to restore spinal alignment or decompress the nerves when there are unstable fractures or neurological injuries. However, after excessive forward thrust force restoration, facet joint dislocation often occurs between the upper vertebra and the fractured vertebra, which usually leads to unsatisfactory reduction outcomes. Herein, we propose a novel spinal facet joint toothed plate to assist in fracture reduction. The purpose of this study is to evaluate the effectiveness of the new spinal facet joint toothed plate in preventing facet joint dislocation, and its advantages compared to traditional pedicle screw-rod decompression. METHODS: A total of 26 patients in the toothed plate group and 93 patients in the traditional group who experienced thoracolumbar fracture with reduction were retrospectively included. Relevant patients' information and clinical parameters were collected. Furthermore, visual analogue scores (VAS) scores and Oswestry disability index (ODI) scores were also collected. Moreover, imaging parameters were calculated based on radiographs. Correlated data were analyzed by χ2 test and t test. RESULTS: All patients in this study had no postoperative complications. Postoperative VAS scores and ODI scores (p < 0.001) were statistically significant (p < 0.001) in both groups compared with preoperative scores and further decreased (p < 0.001) at final follow-up. In addition, the postoperative vertebral margin ratio (VMR) (p < 0.001) and vertebral angle of the injured vertebrae (p < 0.001) were significantly improved compared with the preoperative period. There were no significant differences in postoperative VAS scores and ODI scores between the two groups. However, toothed plate reduction significantly improved the VMR (p < 0.05) and vertebral angle (p < 0.05) compared with conventional reduction. Ultimately, the total screw accuracy was 98.72% (sum of levels 0 and I), with 100% screw accuracy in the segment related to the tooth plate in the tooth plate group. The dislocation rate was higher in the conventional group (6.45%) than in the new serrated plate repositioning group (0.00%). CONCLUSION: The facet toothed plate assisted reduction method prevents facet joint dislocation and improves fracture reduction compared to traditional reduction technique, hence it could be considered as a novel surgical strategy for thoracolumbar fracture reduction.

8.
Emerg Microbes Infect ; : 2356153, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767199

RESUMO

Men who have sex with men and people living with HIV are disproportionately affected in the 2022 multi-country monkeypox epidemic. The smallpox vaccine can induce cross-reactive antibodies against the monkeypox virus (MPXV) and reduce the risk of infection. Data on antibodies against MPXV induced by historic smallpox vaccination in people with HIV are scarce. In this observational study, plasma samples were collected from people living with and without HIV in Shenzhen, China. We measured antibodies binding to two representative proteins of vaccinia virus (VACV; A27L and A33R) and homologous proteins of MPXV (A29L and A35R) using an enzyme-linked immunosorbent assay. We compared the levels of these antibodies between people living with and without HIV. Stratified analyses were performed based on the year of birth of 1981 when the smallpox vaccination was stopped in China. Plasma samples from 677 people living with HIV and 746 people without HIV were tested. A consistent pattern was identified among the four antibodies, regardless of HIV status. VACV antigen-reactive and MPXV antigen-reactive antibodies induced by historic smallpox vaccination were detectable in the people born before 1981, and antibody levels reached a nadir during or after 1981. The levels of smallpox vaccine-induced antibodies were comparable between people living with HIV and those without HIV. Our findings suggest that the antibody levels against MPXV decreased in both people living with and without HIV due to the cessation of smallpox vaccination.

9.
Life Sci ; 349: 122723, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754816

RESUMO

Endothelial dysfunction is the most common pathological feature of cardiovascular diseases, including diabetes mellitus, hypertension and atherosclerosis. It affects both macro- and micro-vasculatures, causing functional impairment of multiple organs. Pien Tze Huang (PZH) is a well-studied traditional Chinese medicine (TCM) with multiple pharmacological properties that produces therapeutic benefits against colorectal cancer, non-alcoholic steatohepatitis and neurodegenerative diseases. However, it is unknown how PZH affects vascular function under pathological conditions. Therefore, this study aimed to investigate the effect of PZH on endothelial function and the underlying mechanisms in db/db diabetic mice. The results showed that chronic treatment of PZH (250 mg/kg/day, 5 weeks) improved endothelial function by restoring endothelium-dependent relaxation through the activation of the Akt-eNOS pathway and inhibition of endothelial oxidative stress, which increased nitric oxide bioavailability. Furthermore, PZH treatment increased insulin sensitivity and suppressed inflammation in diabetic mice. These new findings suggest that PZH may have vaso-protective properties and the potential to protect against diabetic vasculopathy by preserving endothelial function.

10.
Ultrason Sonochem ; 107: 106912, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38762940

RESUMO

The United Nations' Sustainable Development Goals (SDGs) are significant in guiding modern scientific research. In recent years, scholars have paid much attention to MOFs materials as green materials. However, piezo catalysis of MOFs materials has not been widely studied. Piezoelectric materials can convert mechanical energy into electrical energy, while MOFs are effective photocatalysts for removing pollutants. Therefore, it is crucial to design MOFs with piezoelectric properties and photosensitivity. In this study, sulfur-functionalized metal-organic frameworks (S-MOFs) were prepared using organic sulfur-functionalized ligand (H2TDC) ultrasonic synthesis to enhance their piezoelectric properties and visible light absorption. The study demonstrated that the S-MOFs significantly enhanced the reduction of a 10 mg/L solution of hexavalent chromium to 99.4 % within 10 min, using only 15 mg of catalyst. The orbital energy level differences of the elements were analyzed using piezo response force microscopy (PFM) and X-ray photoelectron spectroscopy (XPS). The results showed that MOFs functionalized with sulfur atom ligands have a built-in electric field that facilitates charge separation and migration. This study presents a new approach to enhance the piezoelectric properties of MOFs, which broadens their potential applications in piezo catalysis and piezo-photocatalysis. Additionally, it provides a sustainable method for reducing hexavalent chromium, contributing to the achievement of sustainable development goals, specifically SDG-6, SDG-7, SDG-9, and SDG-12.

11.
Chin J Traumatol ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38570272

RESUMO

Spinal cord injury (SCI) is a devastating traumatic disease seriously impairing the quality of life in patients. Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible. Developing new approaches to regenerate the central nervous system is still the priority. Exosomes derived from mesenchymal stem cells (MSC-Exo) have been proven to robustly quench the inflammatory response or oxidative stress and curb neuronal apoptosis and autophagy following SCI, which are the key processes to rescue damaged spinal cord neurons and restore their functions. Nonetheless, MSC-Exo in SCI received scant attention. In this review, we reviewed our previous work and other studies to summarize the roles of MSC-Exo in SCI and its underlying mechanisms. Furthermore, we also focus on the application of exosomes as drug carriers in SCI. In particular, it combs the advantages of exosomes as drug carriers for SCI, imaging advantages, drug types, loading methods, etc., which provides the latest progress for exosomes in the treatment of SCI, especially drug carriers.

12.
Cryobiology ; 115: 104892, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593909

RESUMO

Refreezing the remaining genetic resources after in vitro fertilization (IVF) can conserve genetic materials. However, the precise damage inflicted by repeated freezing and thawing on bovine sperm and its underlying mechanism remain largely unexplored. Thus, this study investigates the impact of repeated freeze-thaw cycles on sperm. Our findings indicate that such cycles significantly reduce sperm viability and motility. Furthermore, the integrity of the sperm plasma membrane and acrosome is compromised during this process, exacerbating the advanced apoptosis triggered by oxidative stress. Additionally, transmission electron microscopy exposed severe damage to the plasma membranes of both the sperm head and tail. Notably, the "9 + 2" structure of the tail was disrupted, along with a significant decrease in the level of the axonemal protein DNAH10, leading to reduced sperm motility. IVF outcomes revealed that repeated freeze-thaw cycles considerably impair sperm fertilization capability, ultimately reducing the blastocyst rate. In summary, our research demonstrates that repeated freeze-thaw cycles lead to a decline in sperm viability and motility, attributed to oxidative stress-induced apoptosis and DNAH10-related dynamic deficiency. As a result, the utility of semen is compromised after repeated freezing.

13.
Cancer Cell ; 42(4): 701-719.e12, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593782

RESUMO

Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Genômica , Resultado do Tratamento , Fenótipo , Mutação
14.
Angew Chem Int Ed Engl ; : e202400989, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623921

RESUMO

Foldamer is a scaled-down version of coil spring, which can absorb and release energy by conformational change. Here, polymer networks with high-density of molecular springs were developed by employing anion-coordination-based foldamers as the monomer. The coiling of the foldamer is controlled by oligourea ligands coordinating to chloride ions; subsequently, the folding and unfolding of foldamer conformations endow the polymer network with excellent energy dissipation and toughness. The mechanical performance of the corresponding polymer network shows a dramatic increase from P-L2UCl (non-folding), P-L4UCl (a full turn) to P-L6UCl (1.5 turns), in terms of strength (2.62 MPa; 14.26 Mpa; 22.93 Mpa), elongation at break (70%; 325%; 352%), Young's modulus (2.69 MPa; 63.61 Mpa; 141.50 Mpa), and toughness (1.12 MJ/m3; 21.39 MJ/m3; 49.62 MJ/m3), respectively, which are also better than those without anion centers and the non-foldamer based counterparts. Moreover, P-L6UCl shows enhanced strength and toughness than most of the molecular-spring based polymer networks.Moreover, P-L6UCl shows enhanced strength and toughness than most of the molecular-spring based polymer networks. Thus, an effective strategy for designing high-performance anion-coordination-based materials is presented in this study.

15.
Enzyme Microb Technol ; 178: 110447, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626534

RESUMO

Clostridium butyricum (C. butyricum) represents a new generation of probiotics, which is beneficial because of its good tolerance and ability to produce beneficial metabolites, such as short-chain fatty acids and enzymes; however, its low enzyme activity limits its probiotic efficacy. In this study, a mutant strain, C. butyricum FZM 240 was obtained using carbon ion beam irradiation, which exhibited greatly improved enzyme production and tolerance. The highest filter paper, endoglucanase, and amylase activities produced by C. butyricum FZM 240 were 125.69 U/mL, 225.82 U/ mL, and 252.28 U/mL, which were 2.58, 1.95, and 2.21-fold higher, respectively, than those of the original strain. The survival rate of the strain increased by 11.40 % and 5.60 % after incubation at 90 °C for 5 min and with simulated gastric fluid at pH 2.5 for 2 h, respectively, compared with that of the original strain. Whole-genome resequencing and quantitative real-time PCR(qRT-PCR) analysis showed that the expression of genes related to enzyme synthesis (GE000348, GE001963 and GE003123) and tolerance (GE001114) was significantly up-regulated, while that of genes related to acid metabolism (GE003450) was significantly down-regulated. On this basis, homology modeling and functional prediction of the proteins encoded by the mutated genes were performed. According to the results, the properties related to the efficacy of C. butyricum as a probiotic were significantly enhanced by carbon ion beam irradiation, which is a novel strategy for the application of Clostridium spp. as feed additives.

16.
Angew Chem Int Ed Engl ; : e202406937, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656692

RESUMO

Polymers are ideally utilized as damping materials due to the high internal friction of molecular chains, enabling effective suppression of vibrations and noises in various fields. Current strategies rely on broadening the glass transition region or introducing additional relaxation components to enhance the energy dissipation capacity of polymeric damping materials. However, it remains a significant challenge to achieve high damping efficiency through structural control while maintaining dynamic characteristics.  In this work, we propose a new strategy to develop hyperbranched vitrimers (HBVs) containing dense pendant chains and loose dynamic crosslinked networks. A novel yet weak dynamic transesterification between the carboxyl and boronic acid ester was confirmed and used to prepare HBVs based on poly (hexyl methacrylate-2-(4-ethenylphenyl)-5,5-dimethyl-1,3,2-dioxaborinane) P(HMA-co-ViCL) copolymers. The ABn-type of macromonomers, the crosslinking points formed by the dynamic covalent connection via the associative exchange, and the weak yet dynamic exchange reaction are the three keys to developing high-performance HBV damping materials. We found that P(HMA-co-ViCL) 20k-40-60 HBV exhibited ultrahigh energy-dissipation performance over a broad frequency and temperature range, attributed to the synergistic effect of dense pendant chains and weak dynamic covalent crosslinks. This unique design concept will provide a general approach to developing advanced damping materials.

17.
Front Cell Infect Microbiol ; 14: 1322113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585654

RESUMO

Background: Dopamine, a frequently used therapeutic agent for critically ill patients, has been shown to be implicated in clinical infections recently, however, the precise mechanisms underlying this association remain elusive. Klebsiella quasivariicola, a novel strain belonging to the Klebsiella species, exhibits potential pathogenic attributes. The impact of dopamine on K. quasivariicola infection has aroused our interest. Objective: Considering the contribution of host immune factors during infection, this study aimed to investigate the intricate interactions between K. quasivariicola, dopamine, and macrophages were explored. Methods: RAW264.7 cells and C57/BL6 mice were infected with K. quasivariicola, and the bacterial growth within macrophage, the production of inflammatory cytokines and the pathological changes in mice lungs were detected, in the absence or presence of dopamine. Results: Dopamine inhibited the growth of K. quasivariicola in the medium, but promoted bacterial growth when co-cultured with macrophages. The expression of proinflammatory cytokines increased in RAW 264.7 cells infected with K. quasivariicola, and a significant rise was observed upon the addition of dopamine. The infection of K. quasivariicola in mice induced an inflammatory response and lung injury, which were exacerbated by the administration of dopamine. Conclusions: Our findings suggest that dopamine may be one of the potential risk factors associated with K. quasivariicola infection. This empirical insight provides solid references for clinical precision medicine. Furthermore, an in vitro model of microbes-drugs-host immune cells for inhibitor screening was proposed to more accurately replicate the complex in vivo environment. This fundamental work had contributed to the present understanding of the crosstalk between pathogen, dopamine and host immune cells.


Assuntos
Infecções por Klebsiella , Pulmão , Humanos , Camundongos , Animais , Pulmão/patologia , Dopamina , Klebsiella pneumoniae/metabolismo , Macrófagos/microbiologia , Citocinas/metabolismo , Klebsiella/metabolismo , Proliferação de Células , Infecções por Klebsiella/microbiologia , Camundongos Endogâmicos C57BL
18.
Diabetes Metab Syndr Obes ; 17: 1511-1521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586542

RESUMO

Alcoholic fatty liver disease (FALD) and non-alcoholic fatty liver disease (NAFLD) have similar pathological spectra, both of which are associated with a series of symptoms, including steatosis, inflammation, and fibrosis. These clinical manifestations are caused by hepatic lipid synthesis and metabolism dysregulation and affect human health. Despite having been studied extensively, targeted therapies remain elusive. The Cytochrome P450 (CYP450) family is the most important drug-metabolising enzyme in the body, primarily in the liver. It is responsible for the metabolism of endogenous and exogenous compounds, completing biological transformation. This process is relevant to the occurrence and development of AFLD and NAFLD. In this review, the correlation between CYP450 and liver lipid metabolic diseases is summarised, providing new insights for the treatment of AFLD and NAFLD.

19.
Heliyon ; 10(7): e28218, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560106

RESUMO

Host-virus interactions can significantly impact the viral life cycle and pathogenesis; however, our understanding of the specific host factors involved in highly pathogenic avian influenza A virus H7N9 (HPAI H7N9) infection is currently restricted. Herein, we designed and synthesized 65 small interfering RNAs targeting host genes potentially associated with various aspects of RNA virus life cycles. Afterward, HPAI H7N9 viruses were isolated and RNA interference was used to screen for host factors likely to be involved in the life cycle of HPAI H7N9. Moreover, the research entailed assessing the associations between host proteins and HPAI H7N9 proteins. Twelve key host proteins were identified: Annexin A (ANXA)2, ANXA5, adaptor related protein complex 2 subunit sigma 1 (AP2S1), adaptor related protein complex 3 subunit sigma 1 (AP3S1), ATP synthase F1 subunit alpha (ATP5A1), COPI coat complex subunit alpha (COP)A, COPG1, heat shock protein family A (Hsp70) member 1A (HSPA)1A, HSPA8, heat shock protein 90 alpha family class A member 1 (HSP90AA1), RAB11B, and RAB18. Co-immunoprecipitation revealed intricate interactions between viral proteins (hemagglutinin, matrix 1 protein, neuraminidase, nucleoprotein, polymerase basic 1, and polymerase basic 2) and these host proteins, presumably playing a crucial role in modulating the life cycle of HPAI H7N9. Notably, ANXA5, AP2S1, AP3S1, ATP5A1, HSP90A1, and RAB18, were identified as novel interactors with HPAI H7N9 proteins rather than other influenza A viruses (IAVs). These findings underscore the significance of host-viral protein interactions in shaping the dynamics of HPAI H7N9 infection, while highlighting subtle variations compared with other IAVs. Deeper understanding of these interactions holds promise to advance disease treatment and prevention strategies.

20.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38651809

RESUMO

Chiral quantum dots (QDs) are promising materials applied in many areas, such as chiral molecular recognition and spin selective filter for charge transport, and can be prepared by facile ligand exchange approaches. However, ligand exchange leads to an increase in surface defects and reduces the efficiencies of radiative recombination and charge transport, which restricts further applications. Here, we investigate the light-induced photoluminescence (PL) enhancement in chiral L- and D-cysteine CdSe QD thin films, providing a strategy to increase the PL. The PL intensity of chiral CdSe QD films can be significantly enhanced over 100 times by continuous UV laser irradiation, indicating a strong passivation of surface defects upon laser irradiation. From the comparative measurements of the PL intensity evolutions in vacuum, dry oxygen, air, and humid nitrogen atmospheres, we conclude that the mechanism of PL enhancement is photo-induced surface passivation with the assistance of water molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA