Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(12): e2203485, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808826

RESUMO

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. Current COPD diagnosis (i.e., spirometry) could be unreliable because the test depends on an adequate effort from the tester and testee. Moreover, the early diagnosis of COPD is challenging. The authors address COPD detection by constructing two novel physiological signals datasets (4432 records from 54 patients in the WestRo COPD dataset and 13824 medical records from 534 patients in the WestRo Porti COPD dataset). The authors demonstrate their complex coupled fractal dynamical characteristics and perform a fractional-order dynamics deep learning analysis to diagnose COPD. The authors found that the fractional-order dynamical modeling can extract distinguishing signatures from the physiological signals across patients with all COPD stages-from stage 0 (healthy) to stage 4 (very severe). They use the fractional signatures to develop and train a deep neural network that predicts COPD stages based on the input features (such as thorax breathing effort, respiratory rate, or oxygen saturation). The authors show that the fractional dynamic deep learning model (FDDLM) achieves a COPD prediction accuracy of 98.66% and can serve as a robust alternative to spirometry. The FDDLM also has high accuracy when validated on a dataset with different physiological signals.


Assuntos
Aprendizado Profundo , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Espirometria , Redes Neurais de Computação
2.
Proc Natl Acad Sci U S A ; 120(2): e2214634120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595679

RESUMO

The gap between chronological age (CA) and biological brain age, as estimated from magnetic resonance images (MRIs), reflects how individual patterns of neuroanatomic aging deviate from their typical trajectories. MRI-derived brain age (BA) estimates are often obtained using deep learning models that may perform relatively poorly on new data or that lack neuroanatomic interpretability. This study introduces a convolutional neural network (CNN) to estimate BA after training on the MRIs of 4,681 cognitively normal (CN) participants and testing on 1,170 CN participants from an independent sample. BA estimation errors are notably lower than those of previous studies. At both individual and cohort levels, the CNN provides detailed anatomic maps of brain aging patterns that reveal sex dimorphisms and neurocognitive trajectories in adults with mild cognitive impairment (MCI, N = 351) and Alzheimer's disease (AD, N = 359). In individuals with MCI (54% of whom were diagnosed with dementia within 10.9 y from MRI acquisition), BA is significantly better than CA in capturing dementia symptom severity, functional disability, and executive function. Profiles of sex dimorphism and lateralization in brain aging also map onto patterns of neuroanatomic change that reflect cognitive decline. Significant associations between BA and neurocognitive measures suggest that the proposed framework can map, systematically, the relationship between aging-related neuroanatomy changes in CN individuals and in participants with MCI or AD. Early identification of such neuroanatomy changes can help to screen individuals according to their AD risk.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Aprendizado Profundo , Adulto , Humanos , Disfunção Cognitiva/patologia , Encéfalo/patologia , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética/métodos
4.
Sci Rep ; 11(1): 10424, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001937

RESUMO

The global rise of COVID-19 health risk has triggered the related misinformation infodemic. We present the first analysis of COVID-19 misinformation networks and determine few of its implications. Firstly, we analyze the spread trends of COVID-19 misinformation and discover that the COVID-19 misinformation statistics are well fitted by a log-normal distribution. Secondly, we form misinformation networks by taking individual misinformation as a node and similarity between misinformation nodes as links, and we decipher the laws of COVID-19 misinformation network evolution: (1) We discover that misinformation evolves to optimize the network information transfer over time with the sacrifice of robustness. (2) We demonstrate the co-existence of fit get richer and rich get richer phenomena in misinformation networks. (3) We show that a misinformation network evolution with node deletion mechanism captures well the public attention shift on social media. Lastly, we present a network science inspired deep learning framework to accurately predict which Twitter posts are likely to become central nodes (i.e., high centrality) in a misinformation network from only one sentence without the need to know the whole network topology. With the network analysis and the central node prediction, we propose that if we correctly suppress certain central nodes in the misinformation network, the information transfer of network would be severely impacted.


Assuntos
COVID-19 , Comunicação , Mídias Sociais/estatística & dados numéricos , Humanos
5.
Sci Rep ; 11(1): 5861, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712675

RESUMO

Social media have emerged as increasingly popular means and environments for information gathering and propagation. This vigorous growth of social media contributed not only to a pandemic (fast-spreading and far-reaching) of rumors and misinformation, but also to an urgent need for text-based rumor detection strategies. To speed up the detection of misinformation, traditional rumor detection methods based on hand-crafted feature selection need to be replaced by automatic artificial intelligence (AI) approaches. AI decision making systems require to provide explanations in order to assure users of their trustworthiness. Inspired by the thriving development of generative adversarial networks (GANs) on text applications, we propose a GAN-based layered model for rumor detection with explanations. To demonstrate the universality of the proposed approach, we demonstrate its benefits on a gene classification with mutation detection case study. Similarly to the rumor detection, the gene classification can also be formulated as a text-based classification problem. Unlike fake news detection that needs a previously collected verified news database, our model provides explanations in rumor detection based on tweet-level texts only without referring to a verified news database. The layered structure of both generative and discriminative models contributes to the outstanding performance. The layered generators produce rumors by intelligently inserting controversial information in non-rumors, and force the layered discriminators to detect detailed glitches and deduce exactly which parts in the sentence are problematic. On average, in the rumor detection task, our proposed model outperforms state-of-the-art baselines on PHEME dataset by [Formula: see text] in terms of macro-f1. The excellent performance of our model for textural sequences is also demonstrated by the gene mutation case study on which it achieves [Formula: see text] macro-f1 score.

6.
Front Artif Intell ; 3: 54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33733171

RESUMO

Artificial Intelligence (AI) plays a fundamental role in the modern world, especially when used as an autonomous decision maker. One common concern nowadays is "how trustworthy the AIs are." Human operators follow a strict educational curriculum and performance assessment that could be exploited to quantify how much we entrust them. To quantify the trust of AI decision makers, we must go beyond task accuracy especially when facing limited, incomplete, misleading, controversial or noisy datasets. Toward addressing these challenges, we describe DeepTrust, a Subjective Logic (SL) inspired framework that constructs a probabilistic logic description of an AI algorithm and takes into account the trustworthiness of both dataset and inner algorithmic workings. DeepTrust identifies proper multi-layered neural network (NN) topologies that have high projected trust probabilities, even when trained with untrusted data. We show that uncertain opinion of data is not always malicious while evaluating NN's opinion and trustworthiness, whereas the disbelief opinion hurts trust the most. Also trust probability does not necessarily correlate with accuracy. DeepTrust also provides a projected trust probability of NN's prediction, which is useful when the NN generates an over-confident output under problematic datasets. These findings open new analytical avenues for designing and improving the NN topology by optimizing opinion and trustworthiness, along with accuracy, in a multi-objective optimization formulation, subject to space and time constraints.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA