Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5172, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890306

RESUMO

The carbon-carbon coupling at the Cu/Cu2O Schottky interface has been widely recognized as a promising approach for electrocatalytic CO2 conversion into value-added alcohols. However, the limited selectivity of C2+ alcohols persists due to the insufficient control over rectifying interface characteristics required for precise bonding of oxyhydrocarbons. Herein, we present an investigation into the manipulation of the coordination environment of Cu sites through an in-situ electrochemical reconstruction strategy, which indicates that the construction of low-coordinated Cu sites at the Cu/Cu2O interface facilitates the enhanced rectifying interfaces, and induces asymmetric electronic perturbation and faster electron exchange, thereby boosting C-C coupling and bonding oxyhydrocarbons towards the nucleophilic reaction process of *H2CCO-CO. Impressively, the low-coordinated Cu sites at the Cu/Cu2O interface exhibit superior faradic efficiency of 64.15 ± 1.92% and energy efficiency of ~39.32% for C2+ alcohols production, while maintaining stability for over 50 h (faradic efficiency >50%, total current density = 200 mA cm-2) in a flow-cell electrolyzer. Theoretical calculations, operando synchrotron radiation Fourier transform infrared spectroscopy, and Raman experiments decipher that the low-coordinated Cu sites at the Cu/Cu2O interface can enhance the coverage of *CO and adsorption of *CH2CO and CH2CHO, facilitating the formation of C2+ alcohols.

2.
Angew Chem Int Ed Engl ; : e202316755, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739420

RESUMO

The hydrazine oxidation-assisted H2 evolution method promises low-input and input-free hydrogen production. However, developing high-performance catalysts for hydrazine oxidation (HzOR) and hydrogen evolution (HER) is challenging. Here, we introduce a bifunctional electrocatalyst α-MoC/N-C/RuNSA, merging ruthenium (Ru) nanoclusters (NCs) and single atoms (SA) into cubic α-MoC nanoparticles-decorated N-doped carbon (α-MoC/N-C) nanowires, through electrodeposition. The composite showcases exceptional activity for both HzOR and HER, requiring -80 mV and -9 mV respectively to reach 10 mA cm-2. Theoretical and experimental insights confirm the importance of two Ru species for bifunctionality: NCs enhance the conductivity, and its coexistence with SA balances the H ad/desorption for HER and facilitates the initial dehydrogenation during the HzOR. In the overall hydrazine splitting (OHzS) system, α-MoC/N-C/RuNSA excels as both anode and cathode materials, achieving 10 mA cm-2 at just 64 mV. The zinc hydrazine (Zn-Hz) battery assembled with α-MoC/N-C/RuNSA cathode and Zn foil anode can exhibit 97.3 % energy efficiency, as well as temporary separation of hydrogen gas during the discharge process. Therefore, integrating Zn-Hz with OHzS system enables self-powered H2 evolution, even in hydrazine sewage. Overall, the amalgamation of NCs with SA achieves diverse catalytic activities for yielding multifold hydrogen gas through advanced cell-integrated-electrolyzer system.

3.
ACS Sens ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741258

RESUMO

This study innovates plasmonic hydrogen sensors (PHSs) by applying phase space reconstruction (PSR) and convolutional neural networks (CNNs), overcoming previous predictive and sensing limitations. Utilizing a low-cost and efficient colloidal lithography technique, palladium nanocap arrays are created and their spectral signals are transformed into images using PSR and then trained using CNNs for predicting the hydrogen level. The model achieves accurate predictions with average accuracies of 0.95 for pure hydrogen and 0.97 for mixed gases. Performance improvements observed are a reduction in response time by up to 3.7 times (average 2.1 times) across pressures, SNR increased by up to 9.3 times (average 3.9 times) across pressures, and LOD decreased from 16 Pa to an extrapolated 3 Pa, a 5.3-fold improvement. A practical application of remote hydrogen sensing without electronics in hydrogen environments is actualized and achieves a 0.98 average test accuracy. This methodology reimagines PHS capabilities, facilitating advancements in hydrogen monitoring technologies and intelligent spectrum-based sensing.

4.
Nat Commun ; 15(1): 2816, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561364

RESUMO

Nitrate can be electrochemically degraded to produce ammonia while treating sewage while it remains grand challenge to simultaneously realize high Faradaic efficiency and production rate over wide-range concentrations in real wastewater. Herein, we report the defect-rich Cu nanowire array electrode generated by in-situ electrochemical reduction, exhibiting superior performance in the electrochemical nitrate reduction reaction benefitting from the triple synergistic modulation. Notably, the defect-rich Cu nanowire array electrode delivers current density ranging from 50 to 1100 mA cm-2 across wide nitrate concentrations (1-100 mM) with Faradaic efficiency over 90%. Operando Synchrotron radiation Fourier Transform Infrared Spectroscopy and theoretical calculations revealed that the defective Cu sites can simultaneously enhance nitrate adsorption, promote water dissociation and suppress hydrogen evolution. A two-electrode system integrating nitrate reduction reaction in industrial wastewater with glycerol oxidation reaction achieves current density of 550 mA cm-2 at -1.4 V with 99.9% ammonia selectivity and 99.9% nitrate conversion with 100 h stability, demonstrating outstanding practicability.

5.
Adv Mater ; 36(4): e2306108, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37815215

RESUMO

As one of the most promising approaches to producing high-purity hydrogen (H2 ), electrochemical water splitting powered by the renewable energy sources such as solar, wind, and hydroelectric power has attracted considerable interest over the past decade. However, the water electrolysis process is seriously hampered by the sluggish electrode reaction kinetics, especially the four-electron oxygen evolution reaction at the anode side, which induces a high reaction overpotential. Currently, the emerging hybrid electrochemical water splitting strategy is proposed by integrating thermodynamically favorable electro-oxidation reactions with hydrogen evolution reaction at the cathode, providing a new opportunity for energy-efficient H2 production. To achieve highly efficient and cost-effective hybrid water splitting toward large-scale practical H2 production, much work has been continuously done to exploit the alternative anodic oxidation reactions and cutting-edge electrocatalysts. This review will focus on recent developments on electrochemical H2 production coupled with alternative oxidation reactions, including the choice of anodic substrates, the investigation on electrocatalytic materials, and the deep understanding of the underlying reaction mechanisms. Finally, some insights into the scientific challenges now standing in the way of future advancement of the hybrid water electrolysis technique are shared, in the hope of inspiring further innovative efforts in this rapidly growing field.

6.
ACS Appl Mater Interfaces ; 15(22): 26852-26862, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37225429

RESUMO

Hydrazine oxidation-assisted water electrolysis provides a promising way for the energy-efficient electrochemical hydrogen (H2) and synchronous decomposition of hydrazine-rich wastewater, but the development of highly active catalysts still remains a great challenge. Here, we demonstrate the robust and highly active Ru nanoparticles supported on the hollow N-doped carbon microtube (denoted as Ru NPs/H-NCMT) composite structure as HER and HzOR bifunctional electrocatalysts. Thanks to such unique hierarchical architectures, the as-synthesized Ru NPs/H-NCMTs exhibit prominent electrocatalytic activity in the alkaline condition, which needs a low overpotential of 29 mV at 10 mA cm-2 for HER and an ultrasmall working potential of -0.06 V (vs RHE) to attain the same current density for HzOR. In addition, assembling a two-electrode hybrid electrolyzer using as-prepared Ru NPs/H-NCMT catalysts shows a small cell voltage of mere 0.108 V at 100 mA cm-2, as well as the remarkable long-term stability. Density functional theory calculations further reveal that the Ru NPs serve as the active sites for both the HER and HzOR in the nanocomposite, which facilitates the adsorption of H atoms and hydrazine dehydrogenation kinetics, thus enhancing the performances of HER and HzOR. This work paves a novel avenue to develop efficient and stable electrocatalysts toward HER and HzOR that promises energy-saving hybrid water electrolysis electrochemical H2 production.

7.
Small ; 19(35): e2301986, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37096917

RESUMO

Glycerol-assisted hybrid water electrolysis is a potential strategy to achieve energy-efficient hydrogen production. However, the design of an efficient catalyst for the specific reaction is still a key challenge, which suffers from the barrier of regulating the adsorption characteristics of distinctive intermediates in different reactions. Herein, a novel rationale that achieves selective adsorption behavior modulation for self-supported nickel selenide electrode by heteroatom implantation and heterointerface construction through electrodeposition is developed, which can realize nichetargeting optimization on hydrogen evolution reaction (HER) and glycerol oxidation reaction (GOR), respectively. Specifically, the prepared Mo-doped Ni3 Se2 electrode exhibits superior catalytic activity for HER, while the NiSe-Ni3 Se2 electrode exhibits high Faradaic efficiency (FE) towards formate production for GOR. A two-electrode electrolyzer exhibits superb activity that only needs an ultralow cell voltage of 1.40 V to achieve 40 mA cm-2 with a high FE (97%) for formate production. Theoretical calculation unravels that the introduction of molybdenum contributes to the deviation of the d-band center of Ni3 Se2 from the Fermi level, which is conducive to hydrogen desorption. Meanwhile, the construction of the heterojunction induces the distortion of the surface structure of nickel selenide, which exposes highly active nickel sites for glycerol adsorption, thus contributing to the excellent electrocatalytic performance.

8.
Adv Mater ; 35(25): e2300935, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36964932

RESUMO

As promising hydrogen energy carrier, formic acid (HCOOH) plays an indispensable role in building a complete industry chain of a hydrogen economy. Currently, the biomass upgrading assisted water electrolysis has emerged as an attractive alternative for co-producing green HCOOH and H2 in a cost-effective manner, yet simultaneously affording high current density and Faradaic efficiency (FE) still remains a big challenge. Here, the ternary NiVRu-layered double hydroxides (LDHs) nanosheet arrays for selective glycerol oxidation and hydrogen evolution catalysis are reported, which yield an industry-level 1 A cm-2 at voltage of 1.933 V, meanwhile showing considerable HCOOH and H2 productivities of 12.5 and 17.9 mmol cm-2  h-1 , with FEs of almost 80% and 96%, respectively. Experimental and theoretical results reveal that the introduced Ru atoms can tune the local electronic structure of Ni-based LDHs, which not only optimizes hydrogen adsorption kinetics for HER, but also reduces the reaction energy barriers for both the conversion of NiII into GOR-active NiIII and carboncarbon (CC) bond cleavage. In short, this work highlights the potential of large-scale H2 and HCOOH productions from integrated electrocatalytic system and provides new insights for designing advanced electrocatalyst for low-cost and sustainable energy conversion.

9.
Adv Mater ; 35(24): e2206351, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36609998

RESUMO

Water electrolysis has been expected to assimilate the renewable yet intermediate energy-derived electricity for green H2 production. However, current benchmark anodic catalysts of Ir/Ru-based compounds suffer severely from poor dissolution resistance. Herein, an effective modification strategy is proposed by arming a sub-nanometer RuO2 skin with abundant oxygen vacancies to the interconnected Ru clusters/carbon hybrid microsheet (denoted as Ru@V-RuO2 /C HMS), which can not only inherit the high hydrogen evolution reaction (HER) activity of the Ru, but more importantly, activate the superior activity toward the oxygen evolution reaction (OER) in both acid and alkaline conditions. Outstandingly, it can achieve an ultralow overpotential of 176/201 mV for OER and 46/6 mV for the HER to reach 10 mA cm-2 in acidic and alkaline solution, respectively. Inspiringly, the overall water splitting can be driven with an ultrasmall cell voltage of 1.467/1.437 V for 10 mA cm-2 in 0.5 m H2 SO4 /1.0 m KOH, respectively. Density functional theory calculations reveal that armoring the oxygen-vacancy-enriched RuO2 exoskeleton can cooperatively alter the interfacial electronic structure and make the adsorption behavior of hydrogen and oxygen intermediates much close to the ideal level, thus simultaneously speeding up the hydrogen evolution kinetics and decreasing the energy barrier of oxygen release.

10.
J Dev Biol ; 10(1)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35225964

RESUMO

Lymphatic malformations are fluid-filled congenital defects of lymphatic channels occurring in 1 in 6000 to 16,000 patients. There are various types, and they often exist in conjunction with other congenital anomalies and vascular malformations. Great strides have been made in understanding these malformations in recent years. This review summarize known molecular and embryological precursors for lymphangiogenesis. Gene mutations and dysregulations implicated in pathogenesis of lymphatic malformations are discussed. Finally, we touch on current and developing therapies with special attention on targeted biotherapeutics.

11.
Chem Sci ; 12(23): 8149-8156, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194705

RESUMO

RNA modifications play critical roles in regulating a variety of physiological processes. Methylation is the most prevalent modification occurring in RNA. Three isomeric cytidine methylation modifications have been reported in RNA, including 3-methylcytidine (m3C), N4-methylcytidine (m4C), and 5-methylcytidine (m5C), in mammals. Aside from the single methylation on the nucleobase of cytidines, dual methylation modifications occurring in both the 2' hydroxyl of ribose and the nucleobase of cytidines also have been reported, including N4,2'-O-dimethylcytidine (m4Cm) and 5,2'-O-dimethylcytidine (m5Cm). m4Cm has been found in the 16S rRNA of E. coli, while m5Cm has been found in the tRNA of terminal thermophilic archaea and mammals. However, unlike m4Cm and m5Cm, the presumed dual methylation of 3,2'-O-dimethylcytidine (m3Cm) has never been discovered in living organisms. Thus, the presence of m3Cm in RNA remains an open question. In the current study, we synthesized m3Cm and established a liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method to determine the dimethylation of cytidines, m3Cm, m4Cm and m5Cm. Under optimized analytical conditions, m3Cm, m4Cm and m5Cm can be clearly distinguished. Using the method, we discovered the existence of m3Cm in the RNA of mammals. The identified m3Cm is a novel modification that hasn't been reported in the three-domain system, including archaea, bacteria, and eukaryotes. We confirmed that m3Cm mainly existed in the small RNA (<200 nt) of mammals. In addition, we identified, for the first time, the presence of m4Cm in the 18S rRNA of mammalian cells. The stable isotope tracing monitored by mass spectrometry demonstrated that S-adenosyl-l-methionine was a methyl donor for all three dimethylations of cytidines in RNA. The discovery of m3Cm broadens the diversity of RNA modifications in living organisms. In addition, the discovery of m3Cm and m4Cm in mammals opens new directions in understanding RNA modification-mediated RNA processing and gene expression regulation.

12.
Anal Chem ; 93(18): 6938-6946, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33908769

RESUMO

The discovery of dynamic and reversible modifications in RNA expands their functional repertoires. Now, RNA modifications have been viewed as new regulators involved in a variety of biological processes. Among these modifications, thiolation is one kind of special modification in RNA. Several thiouridines have been identified to be present in RNA, and they are essential in the natural growth and metabolism of cells. However, detection of these thiouridines generally is challenging, and few studies could offer the quantitative levels of uridine modifications in RNA, which limits the in-depth elucidation of their functions. Herein, we developed a chemical derivatization in combination with mass spectrometry analysis for the sensitive and simultaneous determination of uridine thiolation and hydroxylation modifications in eukaryotic RNA. The chemical derivatization strategy enables the addition of easily ionizable groups to the uridine thiolation and hydroxylation modifications, leading up to a 339-fold increase in detection sensitivities of these modifications by mass spectrometry analysis. The limits of detection of these uridine modifications can be down to 17 amol. With the established method, we discovered and confirmed that a new modification of 5-hydroxyuridine (ho5U) was widely present in small RNAs of mammalian cells, expanding the diversity of RNA modifications. The developed method shows superior capability in determining low-abundance RNA modifications and may promote identifying new modifications in RNA, which should be valuable in uncovering the unknown functions of RNA modifications.


Assuntos
Eucariotos , RNA , Animais , Hidroxilação , Espectrometria de Massas , Uridina
13.
ACS Appl Mater Interfaces ; 13(3): 3881-3890, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33464037

RESUMO

Designing highly active transition-metal-based electrocatalysts for energy-saving electrochemical hydrogen evolution coupled with hydrazine oxidation possesses more economic prospects. However, the lack of bifunctional electrocatalysts and the absence of intrinsic structure-property relationship research consisting of adsorption configurations and dehydrogenation behavior of N2H4 molecules still hinder the development. Now, a V-doped Ni3N nanosheet self-supported on Ni foam (V-Ni3N NS) is reported, which presents excellent bifunctional electrocatalytic performance toward both hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER). The resultant V-Ni3N NS achieves an ultralow working potential of 2 mV and a small overpotential of 70 mV at 10 mA cm-2 in alkaline solution for HzOR and HER, respectively. Density functional theory calculations reveal that the vanadium substitution could effectively modulate the electronic structure of Ni3N, therefore facilitating the adsorption/desorption behavior of H* for HER, as well as boosting the dehydrogenation kinetics for HzOR.

14.
Transplant Proc ; 53(4): 1211-1214, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33436168

RESUMO

Coronavirus disease 2019 (COVID-19) is associated with high morbidity and mortality worldwide in both the general population and kidney transplant recipients. Acute kidney injury is a known complication of COVID-19 and appears to most commonly manifest as acute tubular injury on renal biopsy. Coagulopathy associated with COVID-19 is a known but poorly understood complication that has been reported to cause thrombotic microangiopathy on rare occasions in native kidneys of patients with COVID-19. Here, we report the first case of biopsy-proven thrombotic microangiopathy in a kidney transplant recipient with COVID-19 who developed acute pancreatitis and clinical features of microangiopathic hemolytic anemia. The patient recovered with supportive care alone.


Assuntos
COVID-19/diagnóstico , Transplante de Rim/efeitos adversos , Pancreatite/etiologia , Microangiopatias Trombóticas/etiologia , COVID-19/complicações , COVID-19/virologia , Creatinina/sangue , Feminino , Humanos , Rim/patologia , Falência Renal Crônica/complicações , Falência Renal Crônica/terapia , Pessoa de Meia-Idade , Pancreatite/diagnóstico , Contagem de Plaquetas , SARS-CoV-2/isolamento & purificação , Tacrolimo/sangue , Tacrolimo/uso terapêutico , Microangiopatias Trombóticas/diagnóstico , Transplante Homólogo/efeitos adversos
15.
Anal Methods ; 13(3): 289-298, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33300893

RESUMO

RNA molecules contain many chemical modifications that can regulate a variety of biological processes. Messenger RNA (mRNA) molecules are critical components in the central dogma of molecular biology. The discovery of reversible chemical modifications in eukaryotic mRNA brings forward a new research field in RNA modification-mediated regulation of gene expression. The modifications in mRNA generally exist in low abundance. The use of highly pure mRNA is critical for the confident identification of new modifications as well as for the accurate quantification of existing modifications in mRNA. In addition, isolation of highly pure mRNA is the first step in many biological research studies. Therefore, the methods for isolating highly pure mRNA are important for mRNA-based downstream studies. A variety of methods for isolating mRNA have been developed in the past few decades and new methods continuously emerge. This review focuses on the methodologies and protocols for isolating mRNA populations. In addition, we discuss the advantages and limitations of these methods. We hope this paper will provide a general view of mRNA isolation strategies and facilitate studies that involve mRNA modifications and functions.


Assuntos
Eucariotos , Células Eucarióticas , Expressão Gênica , Biologia Molecular , RNA Mensageiro/genética
16.
Nanomaterials (Basel) ; 10(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096939

RESUMO

Hepatocellular carcinoma (HCC) is one of the diseases with high mortality worldwide, so its early diagnosis and treatment have attracted much attention. Due to the advantages of the high sensitivity of surface-enhanced Raman scattering (SERS) detection, SERS has excellent application value in the diagnosis of HCC. In this paper, silver nanoparticles (AgNPs) are modified by magnetron sputtering on the surface of polystyrene (PS) templates with spheres of two different diameters. The array of units surrounded by particles is successfully prepared and the SERS performance is characterized. The effect of the gap between AgNPs on plasmon coupling and hot spot distribution is discussed. Finite-difference time domain (FDTD) simulation is used to verify the electric fields and hot spot distribution of the array. The differences in the concentrations of HCC markers are analyzed by using the change of SERS signal intensity of the array. The whole process proves that the preparation of structures with a strong local electric field to provide highly sensitive SERS signals is a key link in the detection of HCC markers, which is conducive to the diagnosis of HCC and has potential application value in clinical diagnosis.

17.
Nanomaterials (Basel) ; 10(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858806

RESUMO

The synthesis of nanostructured surfaces and thin films has potential applications in the field of plasmonics, including plasmon sensors, plasmon-enhanced molecular spectroscopy (PEMS), plasmon-mediated chemical reactions (PMCRs), and so on. In this article, we review various nanostructured surfaces and thin films obtained by the combination of nanosphere lithography (NSL) and physical vapor deposition. Plasmonic nanostructured surfaces and thin films can be fabricated by controlling the deposition process, etching time, transfer, fabrication routes, and their combination steps, which manipulate the formation, distribution, and evolution of hotspots. Based on these hotspots, PEMS and PMCRs can be achieved. This is especially significant for the early diagnosis of hepatocellular carcinoma (HCC) based on surface-enhanced Raman scattering (SERS) and controlling the growth locations of Ag nanoparticles (AgNPs) in nanostructured surfaces and thin films, which is expected to enhance the optical and sensing performance.

18.
ACS Appl Mater Interfaces ; 11(47): 44617-44623, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31689073

RESUMO

Overexpression of the Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein (AFP-L3) is an essential biomarker for early diagnosis of hepatocellular carcinoma (HCC). In this study, we designed a new surface-enhanced Raman spectroscopy active chip for the detection of AFP with high sensitivity and excellent repeatability. This chip was composed of a honeycomb gold nanostructure array with strong electromagnetic field coupling due to the special cavity geometric characteristics of the honeycomb structure. The honeycomb structure exhibited extraordinary performance for the specific detection of AFP in the range of 0.003-3 ng/mL and also determined the proportion of AFP-L3 with a high degree of accuracy, which has shown great potential for application in the clinical diagnosis of HCC.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Nanoestruturas/química , Análise Espectral Raman/métodos , alfa-Fetoproteínas/análise , Biomarcadores Tumorais/análise , Carcinoma Hepatocelular/química , Desenho de Equipamento , Humanos , Neoplasias Hepáticas/química , Sensibilidade e Especificidade , Análise Espectral Raman/instrumentação
19.
Arch Pathol Lab Med ; 143(10): 1212-1224, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31063013

RESUMO

CONTEXT.­: Light chain-associated acute tubulointerstitial nephritis (LC-ATIN) is a variant of light chain proximal tubulopathy (LCPT). It is characterized by interstitial inflammation with tubulitis and deposition of monoclonal light chains in the tubulointerstitium. LC-ATIN is a rather poorly recognized pattern of LCPT and not much is known about this entity. OBJECTIVE.­: To determine the clinicopathologic features of patients with LC-ATIN and investigate the proximal tubular injury and mechanism of interstitial inflammation in LC-ATIN. DESIGN.­: A total of 38 cases of LC-ATIN were identified from the archives of 5043 renal biopsy specimens. In all cases, routine light microscopic examination, immunofluorescence, and electron microscopic examination were performed. In selected cases, immunofluorescent staining of dendritic cells and immunohistochemical staining for 4 tubular injury markers-KIM-1, p53, bcl-2, and Ki-67-were performed. RESULTS.­: A characteristic finding in LC-ATIN cases was immunofluorescence staining of monoclonal light chains along tubular basement membranes in linear fashion and inside proximal tubular cells with a granular pattern. No monoclonal light chains were present in glomerular or vascular compartments confirmed with immunofluorescence, electron microscopy, and ultrastructural gold labeling. Ten of 15 LC-ATIN cases (67%) were concurrently positive for the 4 tubular injury markers. Dendritic cells were identified within the tubulointerstitium in the renal biopsy specimens, interacting with surrounding tubules with light-chain deposits and inflammatory cells. CONCLUSIONS.­: Significant proximal tubular injury occurs associated with LC-ATIN, and the monoclonal light chains accumulated in proximal tubular cells contribute to the injury. Dendritic cells are involved in the pathogenesis of interstitial inflammation in LC-ATIN.


Assuntos
Nefrite Intersticial/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Células Dendríticas/imunologia , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Inflamação/patologia , Túbulos Renais Proximais/imunologia , Túbulos Renais Proximais/patologia , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Nefrite Intersticial/imunologia
20.
Hum Pathol ; 54: 113-20, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27085555

RESUMO

Dendritic cells (DCs) play a critical role in the regulation of the adaptive immune response and can be separated into 2 major subsets: myeloid (mDC) and plasmacytoid (pDC) DCs. Acute tubulointerstitial nephritis (ATIN) is a common cause of injury to renal tubules and interstitium resulting from the interplay of tubular cells and inflammatory cells and their products. However, the involvement of DCs in ATIN is still unknown. In this study, the participation and localization of myeloid (CD1c) and plasmacytoid (CD303) DC subsets in the biopsies from patients with ATIN (n=20), lupus nephritis (n=17, positive control), or minimal change disease (n=14, negative control) were investigated. DCs were identified morphologically within the tubulointerstitium in the renal biopsies by transmission electron microscopy interacting with surrounding tubules and inflammatory cells. Direct immunofluorescence showed that both CD1c+DCs and CD303+ DCs exist in all the renal biopsies. As compared with minimal change disease, biopsies with ATIN had significantly increased CD1c+DCs (P<.001) and CD303+ DCs (P<.001). The number of CD1c+DCs in ATIN was significantly higher than that in lupus nephritis (P<.02), whereas the number of CD303+ DCs in ATIN was slightly but not significantly higher than that in lupus nephritis (P=.2). DCs in the biopsies with ATIN were restricted to the tubulointerstitium forming dense networks, and most of them maintained immature state. All these findings suggest that DC subsets may be differentially involved in the pathogenesis of ATIN. Their potential role in intrarenal regulation of immune responses in ATIN is proposed.


Assuntos
Células Dendríticas/ultraestrutura , Túbulos Renais/ultraestrutura , Nefrite Intersticial/patologia , Antígenos CD1/análise , Biomarcadores/análise , Biópsia , Células Dendríticas/imunologia , Imunofluorescência , Glicoproteínas/análise , Humanos , Túbulos Renais/imunologia , Lectinas Tipo C/análise , Glicoproteínas de Membrana/análise , Microscopia Eletrônica de Transmissão , Nefrite Intersticial/imunologia , Fenótipo , Receptores Imunológicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA