Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nano Lett ; 24(19): 5705-5713, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701226

RESUMO

Ruthenium (Ru) is an ideal substitute to commercial Pt/C for the acidic hydrogen evolution reaction (HER), but it still suffers from undesirable activity due to the strong adsorption free energy of H* (ΔGH*). Herein, we propose crystalline phase engineering by loading Ru clusters on precisely prepared cubic and hexagonal molybdenum carbide (α-MoC/ß-Mo2C) supports to modulate the interfacial interactions and achieve high HER activity. Advanced spectroscopies demonstrate that Ru on ß-Mo2C shows a lower valence state and withdraws more electrons from the support than that of Ru on α-MoC, indicative of a strong interfacial interaction. Density functional theory reveals that the ΔGH* of Ru/ß-Mo2C approaches 0 eV, illuminating an enhancement mechanism at the Ru/ß-Mo2C interface. The resultant Ru/ß-Mo2C exhibits an encouraging performance in a proton exchange membrane water electrolyzer with a low cell voltage (1.58 V@ 1.0 A cm-2) and long stability (500 h@ 1.0 A cm-2).

2.
Nat Ecol Evol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637692

RESUMO

Self-incompatibility and recurrent transitions to self-compatibility have shaped the extant mating systems underlying the nonrandom mating critical for speciation in angiosperms. Linkage between self-incompatibility and speciation is illustrated by the shared pollen rejection pathway between self-incompatibility and interspecific unilateral incompatibility (UI) in the Brassicaceae. However, the pollen discrimination system that activates this shared pathway for heterospecific pollen rejection remains unknown. Here we show that Stigma UI3.1, the genetically identified stigma determinant of UI in Arabidopsis lyrata × Arabidopsis arenosa crosses, encodes the S-locus-related glycoprotein 1 (SLR1). Heterologous expression of A. lyrata or Capsella grandiflora SLR1 confers on some Arabidopsis thaliana accessions the ability to discriminate against heterospecific pollen. Acquisition of this ability also requires a functional S-locus receptor kinase (SRK), whose ligand-induced dimerization activates the self-pollen rejection pathway in the stigma. SLR1 interacts with SRK and interferes with SRK homomer formation. We propose a pollen discrimination system based on competition between basal or ligand-induced SLR1-SRK and SRK-SRK complex formation. The resulting SRK homomer levels would be sensed by the common pollen rejection pathway, allowing discrimination among conspecific self- and cross-pollen as well as heterospecific pollen. Our results establish a mechanistic link at the pollen recognition phase between self-incompatibility and interspecific incompatibility.

3.
Adv Mater ; : e2400101, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502025

RESUMO

 Microfluidic deprotonation approach is proposed to realize continuous, scalable, efficient, and uniform production of aramid nanofibers (ANFs) by virtue of large specific surface area, high mixing efficiency, strong heat transfer capacity, narrow residence time distribution, mild laminar-flow process, and amplification-free effect of the microchannel reactor. By means of monitoring capabilities endowed by the high transparency of the microchannel, the kinetic exfoliation process of original aramid particles is in situ observed and the corresponding exfoliation mechanism is established quantificationally. The deprotonated time can be reduced from the traditional several days to 7 min for the final colloidal dispersion due to the synergistic effect between enhanced local shearing/mixing and the rotational motion of aramid particles in microchannel revealed by numerical simulations. Furthermore, the cascade microfluidic processing approach is used to make various ANF colloidal aerogels including aerogel fibers, aerogel films, and 3D-printed aerogel articles. Comprehensive characterizations show that these cascade-microfluidic-processed colloidal aerogels have identical features as those prepared in batch-style mode, revealing the versatile use value of these ANFs. This work achieves significant progress toward continuous and efficient production of ANFs, bringing about appreciable prospects for the practical application of ANF-based materials and providing inspiration for exfoliating any other nano-building blocks.

4.
Adv Mater ; : e2314049, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516927

RESUMO

Ensuring high catalytic activity and durability at low iridium (Ir)usage is still a big challenge for the development of electrocatalysts toward oxygen evolution reaction (OER) in proton exchange membrane water electrolysis (PEMWE). Here, a rapid liquid-reduction combined with surface galvanic replacement strategy is reported to synthesize the sub 2 nm high-entropy alloy (HEA) nanoparticles featured with Ir-rich IrRuNiMo medium-entropy oxide shell (Ir-MEO) and a IrRuCoNiMo HEA core (HEA@Ir-MEO). Advanced spectroscopies reveal that the Ir-rich MEO shell inhibits the severe structural evolution of transition metals upon the OER, thus guaranteeing the structural stability. In situ differential electrochemical mass spectrometry, activation energy analysis and theoretical calculations unveil that the OER on HEA@Ir-MEO follows an adsorbate evolution mechanism pathway, where the energy barrier of rate-determining step is substantially lowered. The optimized catalyst delivers the excellent performance (1.85 V/3.0 A cm-2@80 °C), long-term stability (>500 h@1.0 Acm-2), and low energy consumption (3.98 kWh Nm-3 H2 @1.0 A cm-2) in PEMWE with low Ir usage of ≈0.4 mg cm-2, realizing the dramatical reduction of hydrogen (H2) production cost to 0.88 dollar per kg (H2).

5.
Light Sci Appl ; 13(1): 40, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38296959

RESUMO

Recent experiments have demonstrated that synthesized complex-frequency waves can impart a virtual gain to molecule sensing systems, which can effectively restore information lost due to intrinsic molecular damping. The enhancement notably amplifies the signal of trace molecular vibrational fingerprints, thereby substantially improving the upper limit of sensitivity.

6.
Small ; 20(23): e2310353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38150652

RESUMO

Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au-Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed-mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au-Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au-Pd nanorods are fine-tailored. More importantly, the chiral Au-Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization-dependent plasmon-enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon-induced chiral photochemistry.

7.
Nano Lett ; 23(23): 11376-11384, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038244

RESUMO

Constructing chiral plexcitonic systems with tunable plasmon-exciton coupling may advance the scientific exploitation of strong light-matter interactions. Because of their intriguing chiroptical properties, chiral plasmonic materials have shown promising applications in photonics, sensing, and biomedicine. However, the strong coupling of chiral plasmonic nanoparticles with excitons remains largely unexplored. Here we demonstrate the construction of a chiral plasmon-exciton system using chiral AuAg nanorods and J aggregates for tuning the plexcitonic optical chirality. Circular dichroism spectroscopy was employed to characterize chiral plasmon-exciton coupling, in which Rabi splitting and anticrossing behaviors were observed, whereas the extinction spectra exhibited less prominent phenomena. By controlling the number of molecular excitons and the energy detuning between plasmons and excitons, we have been able to fine-tune the plexcitonic optical chirality. The ability to fine-tune the plexcitonic optical chirality opens up unique opportunities for exploring chiral light-matter interactions and boosting the development of emerging chiroptical devices.

8.
Opt Lett ; 48(24): 6569-6572, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099801

RESUMO

A high-contrast imaging technique for phase objects based on the optical vortex coronagraph (OVC) is proposed. This method offers the unique advantage of background-free imaging due to the introduction of azimuthal phase in the Fourier plane. We employed the OVC method to detect femtosecond laser-induced air plasma and compared it with the classic diffractometry and fluorescent imaging methods. We achieved a phase sensitivity of ∼0.035 waves that surpassed the capabilities of the other two methods. The combination of this highly sensitive imaging technique with the pump-probe method holds promise for applications in ultrafast imaging of laser-material interactions.

9.
ACS Nano ; 17(18): 18411-18420, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37699578

RESUMO

Aerogel fibers, combining the nanoporous characteristics of aerogels with the slenderness of fibers, have emerged as a rising star in nanoscale materials science. However, endowing nanoporous aerogel fibers with good strength and high toughness remains elusive due to their high porosity and fragile mechanics. To address this challenge, this paper reports supertough aerogel fibers (SAFs) initially started from ionic-liquid-dissociated cellulose via wet-spinning and supercritical drying in sequence. The supertough nanoporous aerogel fibers assembled with cellulose nanofibers exhibit a high specific surface area (372 m2/g), good mechanical strength (30 MPa), and large elongation (107%). Benefiting from their high strength and elongation, the resultant cellulose nanoporous aerogel fibers show ultrahigh toughness up to 21.85 MJ/m3, much outperforming the known aerogel materials in the literature. Moreover, the toughness of this nanoporous aerogel fiber is 7.4 times higher than that of human knee ligaments, and its specific toughness is comparable to that of commonly used solid polyester fibers. In addition, we also verified the weavability, desirable thermal insulation performance, and supertoughness to resist the transient impact of SAFs. The long-sought strategy to simultaneously resolve the strength and toughness of nanoporous aerogel fibers, in combination with the biodegradable nature of the cellulose, provides multifaceted opportunities for broad potential applications, including lightweight wearable textiles and beyond.

10.
Adv Mater ; 35(46): e2303905, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37535390

RESUMO

The atomic-local environment of catalytically active sites plays an important role in tuning the activity of carbon-based metal-free electrocatalysts (C-MFECs). However, the rational regulation of the environment is always impeded by synthetic limitations and insufficient understanding of the formation mechanism of the catalytic sites. Herein, the possible cleavage mechanism of carbon nanotubes (CNTs) through the crossing points during ball-milling is proposed, resulting in abundant CNT tips that are more susceptible to be modified by heteroatoms, achieving precise modulation of the atomic environment at the tips. The obtained CNTs with N,S-rich tips (N,S-TCNTs) exhibit a wide potential window of 0.59 V along with H2 O2 selectivity for over 90.0%. Even using air as the O2 source, the flow cell system with N,S-TCNTs catalyst attains high H2 O2 productivity up to 30.37 mol gcat. -1  h-1 @350 mA cm-2 , superior to most reported C-MFECs. From a practical point of view, a solid electrolyzer based on N,S-TCNTs is further employed to realize the in-situ continuous generation of pure H2 O2 solution with high productivity (up to 4.35 mmol cm-2  h-1 @300 mA cm-2 ; over 300 h). The CNTs with functionalized tips hold great promise for practical applications, even beyond H2 O2 generation.

11.
Opt Lett ; 48(11): 3119-3122, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262295

RESUMO

Metasurfaces integrated with waveguides have been recently explored as a means to control the conversion between guided modes and radiation modes for versatile functionalities. However, most efforts have been limited to constructing a single free-space wavefront using guided waves, which hinders the functional diversity and requires a complex configuration. Here, a new, to the best of our knowledge, type of non-uniformly arranged geometric metasurface enabling independent multi-channel wavefront engineering of guided wave radiation is ingeniously proposed. By endowing three structural degrees of freedom into a meta-atom, two mechanisms (the Pancharatnam-Berry phase and the detour phase) of the metasurface are perfectly joined together, giving rise to three phase degrees of freedom to manipulate. Therefore, an on-chip polarization demultiplexed metalens, a wavelength-multiplexed metalens, and RGB-colored holography with an improved information capacity are successively demonstrated. Our results enrich the functionalities of an on-chip metasurface and imply the prospect of advancements in multiplexing optical imaging, augmented reality (AR) holographic displays, and information encryption.

12.
Poult Sci ; 102(7): 102718, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37141813

RESUMO

Approaches for the diagnosis of wooden breast (WB) myopathy in live birds are urgently required before applying intervention strategies to reduce occurrence and severity for the poultry industry. The objective of this study was to characterize the serum metabolic profiles in male broilers affected by WB and to identify biomarkers related to this myopathy. Broilers were categorized into normal (CON) and WB groups based on gross scoring and histological evaluation. Gas chromatography-mass spectrometry-based metabolomics, multivariate analysis, and orthogonal partial least squares discriminant analysis revealed a clear separation between CON and WB. A total of 73 significantly different (P < 0.05) metabolites with 17 upregulated and 56 downregulated were identified, which were mainly involved in pathways of alanine, aspartate, and glutamate metabolism, carbohydrate metabolism, and taurine and hypotaurine metabolism. By using the nested cross-validation function of random forest analysis, 9 significantly altered (P < 0.05) metabolites (cerotinic acid, arabitol, phosphoenolpyruvate, terephthalic acid, cis-gondoic acid, N-acetyl-d-glucosamine, 4-hydroxymandelic acid, caffeine, and xanthurenic acid) were identified as biomarkers with an excellent discriminant performance for WB myopathy. Collectively, this study provides new insights for a deeper understanding of the pathogenesis and provides metabolites as biomarkers for diagnostic utilization of WB myopathy.


Assuntos
Galinhas , Doenças Musculares , Masculino , Animais , Cromatografia Gasosa-Espectrometria de Massas/veterinária , Doenças Musculares/diagnóstico , Doenças Musculares/veterinária , Doenças Musculares/etiologia , Metabolômica , Biomarcadores
13.
Nat Commun ; 14(1): 2040, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041142

RESUMO

Electrochemical coupling of biomass valorization with carbon dioxide (CO2) conversion provides a promising approach to generate value-added chemicals on both sides of the electrolyzer. Herein, oxygen-vacancy-rich indium oxyhydroxide (InOOH-OV) is developed as a bifunctional catalyst for CO2 reduction to formate and 5-hydroxymethylfurfural electrooxidation to 2,5-furandicarboxylic acid with faradaic efficiencies for both over 90.0% at optimized potentials. Atomic-scale electron microscopy images and density functional theory calculations reveal that the introduction of oxygen vacancy sites causes lattice distortion and charge redistribution. Operando Raman spectra indicate oxygen vacancies could protect the InOOH-OV from being further reduced during CO2 conversion and increase the adsorption competitiveness for 5-hydroxymethylfurfural over hydroxide ions in alkaline electrolytes, making InOOH-OV a main-group p-block metal oxide electrocatalyst with bifunctional activities. Based on the catalytic performance of InOOH-OV, a pH-asymmetric integrated cell is fabricated by combining the CO2 reduction and 5-hydroxymethylfurfural oxidation together in a single electrochemical cell to produce 2,5-furandicarboxylic acid and formate with high yields (both around 90.0%), providing a promising approach to generate valuable commodity chemicals simultaneously on both electrodes.

14.
Small Methods ; 7(4): e2300002, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36732848

RESUMO

Aerogels, shaped as fibers, films, as well as monoliths, have demonstrated a plethora of applications in both academia and industry due to charming properties including ultralow density, large specific surface area, high porosity, etc., however studies on more complicated aerogel forms (e.g., honeycombs) with more powerful applications have not been fully explored. Herein, the Kevlar aerogel honeycomb is firstly constructed through a dry ice-assisted 3D printing method, where the Kevlar nanofiber ink is printed directly in dry ice freezing atmosphere, followed by supercritical fluid drying. The subsequent 3D Kevlar/shear-stiffening gel (SSG) honeycomb (3D-KSH) can be obtained by selective nanoconfining of SSG into nanopores of the aerogel skeleton wall (with the loading amount of 93 wt%) rather than into open honeycomb channels, solving the leakage, creep deformation, and shape design infeasibility of the SSG. Combining the advantages of Kevlar, honeycomb and SSG, the fabricated 3D-KSH shows obvious smart responsive behavior to external stimulus. Additionally, the 3D-KSH has high strain rate sensitivity (sensitivity factor of 4.16 × 10-4 ) and excellent impact protection performance (energy absorption value up to 176 J g-1 at the strain rate of 6300 s-1 ), which will significantly broaden application prospect in some intelligent protection fields.

15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(2): 208-212, 2023 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-36709942

RESUMO

OBJECTIVE: To explore the clinical phenotype and genetic basis for a Chinese pedigree affected with Oral-facial-digital syndrome type I (OFD1). METHODS: A pedigree with OFD1 who presented at Hebei General Hospital on March 17, 2021 was selected as the subject. Clinical data of the child was collected. Trio-whole exome sequencing (trio-WES) was carried out for the proband and members of her pedigree, and candidate variant was verified by Sanger sequencing. RESULTS: The proband has featured hypotelorism, broad nasal root, flat nasal tip, lobulated tongue, tongue neoplasia, camptodactyly of left fifth finger, syndactyly of right fourth and fifth fingers, and delayed intellectual and language development. Trio-WES revealed that the proband and her daughter, sister and mother have harbored a heterozygous c.224A>G (p.Asn75Ser) variant of the OFD1 gene. The same variant was not found among healthy members from her pedigree. CONCLUSION: The c.224A>G (p.Asn75Ser) variant probably underlay the OFD1 in this pedigree. Above discovery has enriched the spectrum of OFD1 gene variants.


Assuntos
Síndromes Orofaciodigitais , Humanos , Feminino , Linhagem , Síndromes Orofaciodigitais/genética , População do Leste Asiático , Fenótipo , Heterozigoto , Mutação , China
16.
Pharmacol Res ; 187: 106592, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470547

RESUMO

New therapies for relapsed/refractory diffuse large B-cell lymphoma (r/rDLBCL) have emerged in recent years, but there have been no comprehensive quantitative comparisons of the efficacy of these therapies. In this study, the efficacy characteristics of 11 types of treatment strategy and 63 treatment regimens were compared by model based meta-analysis. We found that compared with monotherapy, association therapy had significant benefits in terms of overall survival (OS), progression-free survival (PFS), and objective response rate (ORR). However, whereas treatment regimens involving chemotherapy contributed to significant improvements in ORR and PFS, OS was not improved. In terms of treatment strategy, we identified chemotherapy in association with immunotherapy sequential autologous stem cell transplantation (ASCT), the association of two different types of immunotherapies, chemotherapy sequential ASCT, chemotherapy in association with immunotherapy, and chemotherapy in association with two types of immunotherapies as showing better efficacy. With respect to specific treatment regimens, we found that the following had better efficacy: rituximab in association with inotuzumab ozogamicin; rituximab in association with carmustine, etoposide, cytarabine, and melphalan sequential ASCT (R-BEAM+ASCT); lenalidomide in association with rituximab, etoposide, cisplatin, cytarabine, and methylprednisolone; iodine-131 tositumomab in association with BEAM sequential ASCT; and chemotherapy sequential chimeric antigen receptor T-cell immunotherapy, with median OS of 48.2, 34.2, 27.8, 25.8, and 25 months, respectively. Moreover, with respect to association therapy, there was a strong correlation between the 6-month PFS and 2-year OS. The findings of this study provide the necessary quantitative information for clinical practice and clinical trial design for the treatment of r/rDLBCL.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfoma Difuso de Grandes Células B , Humanos , Rituximab , Etoposídeo/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Transplante Autólogo , Recidiva Local de Neoplasia/tratamento farmacológico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Citarabina/uso terapêutico
17.
Adv Healthc Mater ; 12(1): e2201591, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165237

RESUMO

Hemostatic materials have played a significant role in mitigating traumatic injury by controlling bleeding, however, the fabrication of the desirable material's structure to enhance the accumulation of blood cells and platelets for highly efficient hemostasis is still a great challenge. In this work, directed assembly of poly(vinyl alcohol) (PVA) macromolecules covering the rigid Kevlar nanofiber (KNF) network during 3D printing process is utilized to fabricate hydrophilic, biocompatible, and mechanically stable KNF-PVA aerogel filaments for effective enriching blood components by fast water absorption. As such, KNF-PVA aerogel gauzes demonstrate remarkable water permeability (338 mL cm-2 s-1 bar-1 ), water absorption speed (as high as 9.64 g g-1 min-1 ) and capacity (more than ten times of self-weight), and ability to enrich micron-sized particles when contacting aqueous solution. All these properties favor efficient hemostasis and the resulting KNF-PVA aerogel gauzes significantly outperform the commercial product Quikclot Gauze (Z-Medica) during in vivo experiments with the rat liver laceration model, reducing the hemostasis time by half (60 ± 4 s) and the blood loss by two thirds (0.07 ± 0.01 g). These results demonstrate a robust strategy to design various aerogel gauzes for hemostasis applications.


Assuntos
Hemostasia , Hemostáticos , Ratos , Animais , Hemostáticos/farmacologia , Álcool de Polivinil/química , Hemorragia , Água , Impressão Tridimensional
18.
Nano Lett ; 22(23): 9434-9440, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36469749

RESUMO

Insufficient catalyst utilization, limited mass transport, and high ohmic resistance of the conventional membrane electrode assembly (MEA) lead to significant performance losses of proton exchange membrane water electrolysis (PEMWE). Herein we propose a novel ordered MEA based on anode with a 3D membrane/catalytic layer (CL) interface and gradient tapered arrays by the nanoimprinting method, confirmed by energy dispersive spectroscopy. Benefiting from the maximized triple-phase interface, rapid mass transport, and gradient CL by overall design, such an ordered structure with Ir loading of 0.2 mg cm-2 not only greatly increases the electrochemical active area by 4.2 times but also decreases the overpotentials of both mass transport and ohmic polarization by 13.9% and 8.7%, respectively, compared with conventional MEA with an Ir loading of 2 mg cm-2, thus ensuring a superior performance (1.801 V at 2 A cm-2) and good stability. This work provides a new strategy of designing MEA for high-performance PEMWE.

19.
Opt Express ; 30(10): 16699-16711, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221507

RESUMO

Metasurface antennas scatter traveling guided waves into spatial waves, which act as extendable subsources to overcome the size limitation on emission sources. With the use of a Pancharatnam-Berry phase metasurface stimulated by a circularly polarized wave in a waveguide, the local phase distributions of scattered spatial waves can be made consistent with those of an Airy beam, thereby allowing the generation of high-quality Airy beams. In a slab waveguide, circularly polarized waves are synthesized through superposition of in-plane transverse electric modes. Simulations demonstrate that a 20 mm × 20 mm footprint all-dielectric guided wave-driven metasurface generates a 2D Airy beam at a frequency of 0.6 THz. Furthermore, we employ a metasurface deposited on a strip waveguide to generate a 1D Airy beam under direct stimulation by the fundamental transverse electric mode. Our work not only provides a large-scale emitter, but it also suggests promising potential applications in on-chip imaging and holography.

20.
ACS Nano ; 16(11): 19174-19186, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36251931

RESUMO

Plasmonic nanoparticles with an intrinsic chiral structure have emerged as a promising chiral platform for applications in biosensing, medicine, catalysis, separation, and photonics. Quantitative understanding of the correlation between nanoparticle structure and optical chirality becomes increasingly important but still represents a significantly challenging task. Here we demonstrate that tunable signal reversal of circular dichroism in the seed-mediated chiral growth of plasmonic nanoparticles can be achieved through the hybridization of bichiral centers without inverting the geometric chirality. Both experimental and theoretical results demonstrated the opposite sign of circular dichroism of two different bichiral geometries. Chiral molecules were found to not only contribute to the chirality transfer from molecules to nanoparticles but also manipulate the structural evolution of nanoparticles that synergistically drive the formation of two different chiral centers. By deliberately adjusting the concentration of chiral molecules and other synthetic parameters, such as the reducing agent concentration, the capping surfactant concentration, and the amount of Au precursor, we have been able to fine-tune the circular dichroism reversal of bichiral Au nanoparticles. We further demonstrate that the structure of chiral molecules and the crystal structure of Au seeds play crucial roles in the formation of Au nanoparticles with bichiral centers. The insights gained from this work not only shed light on the underlying mechanisms dictating the intriguing geometric and chirality evolution of bichiral plasmonic nanoparticles but also provide an important knowledge framework that guides the rational design of bichiral plasmonic nanostructures toward chiroptical applications.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Dicroísmo Circular , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA