Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Adv Sci (Weinh) ; : e2400023, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828688

RESUMO

The factors driving glioma progression remain poorly understood. Here, the epigenetic regulator TRIM24 is identified as a driver of glioma progression, where TRIM24 overexpression promotes HRasV12 anaplastic astrocytoma (AA) progression into epithelioid GBM (Ep-GBM)-like tumors. Co-transfection of TRIM24 with HRasV12 also induces Ep-GBM-like transformation of human neural stem cells (hNSCs) with tumor protein p53 gene (TP53) knockdown. Furthermore, TRIM24 is highly expressed in clinical Ep-GBM specimens. Using single-cell RNA-sequencing (scRNA-Seq), the authors show that TRIM24 overexpression impacts both intratumoral heterogeneity and the tumor microenvironment. Mechanically, HRasV12 activates phosphorylated adaptor for RNA export (PHAX) and upregulates U3 small nucleolar RNAs (U3 snoRNAs) to recruit Ku-dependent DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Overexpressed TRIM24 is also recruited by PHAX to U3 snoRNAs, thereby facilitating DNA-PKcs phosphorylation of TRIM24 at S767/768 residues. Phosphorylated TRIM24 induces epigenome and transcription factor network reprogramming and promotes Ep-GBM-like transformation. Targeting DNA-PKcs with the small molecule inhibitor NU7441 synergizes with temozolomide to reduce Ep-GBM tumorigenicity and prolong animal survival. These findings provide new insights into the epigenetic regulation of Ep-GBM-like transformation and suggest a potential therapeutic strategy for patients with Ep-GBM.

2.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559270

RESUMO

Mutant isocitrate dehydrogenase 1 (mIDH1; IDH1 R132H ) exhibits a gain of function mutation enabling 2-hydroxyglutarate (2HG) production. 2HG inhibits DNA and histone demethylases, inducing epigenetic reprogramming and corresponding changes to the transcriptome. We previously demonstrated 2HG-mediated epigenetic reprogramming enhances DNA-damage response and confers radioresistance in mIDH1 gliomas harboring p53 and ATRX loss of function mutations. In this study, RNA-seq and ChIP-seq data revealed human and mouse mIDH1 glioma neurospheres have downregulated gene ontologies related to mitochondrial metabolism and upregulated autophagy. Further analysis revealed that the decreased mitochondrial metabolism was paralleled by a decrease in glycolysis, rendering autophagy as a source of energy in mIDH1 glioma cells. Analysis of autophagy pathways showed that mIDH1 glioma cells exhibited increased expression of pULK1-S555 and enhanced LC3 I/II conversion, indicating augmented autophagy activity. This dependence is reflected by increased sensitivity of mIDH1 glioma cells to autophagy inhibition. Blocking autophagy selectively impairs the growth of cultured mIDH1 glioma cells but not wild-type IDH1 (wtIDH1) glioma cells. Targeting autophagy by systemic administration of synthetic protein nanoparticles packaged with siRNA targeting Atg7 (SPNP-siRNA-Atg7) sensitized mIDH1 glioma cells to radiation-induced cell death, resulting in tumor regression, long-term survival, and immunological memory, when used in combination with IR. Our results indicate autophagy as a critical pathway for survival and maintenance of mIDH1 glioma cells, a strategy that has significant potential for future clinical translation. One Sentence Summary: The inhibition of autophagy sensitizes mIDH1 glioma cells to radiation, thus creating a promising therapeutic strategy for mIDH1 glioma patients. Graphical abstract: Our genetically engineered mIDH1 mouse glioma model harbors IDH1 R132H in the context of ATRX and TP53 knockdown. The production of 2-HG elicited an epigenetic reprogramming associated with a disruption in mitochondrial activity and an enhancement of autophagy in mIDH1 glioma cells. Autophagy is a mechanism involved in cell homeostasis related with cell survival under energetic stress and DNA damage protection. Autophagy has been associated with radio resistance. The inhibition of autophagy thus radio sensitizes mIDH1 glioma cells and enhances survival of mIDH1 glioma-bearing mice, representing a novel therapeutic target for this glioma subtype with potential applicability in combined clinical strategies.

3.
J Clin Invest ; 134(11)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662454

RESUMO

Widespread alterations in RNA alternative splicing (AS) have been identified in adult gliomas. However, their regulatory mechanism, biological significance, and therapeutic potential remain largely elusive. Here, using a computational approach with both bulk and single-cell RNA-Seq, we uncover a prognostic AS signature linked with neural developmental hierarchies. Using advanced iPSC glioma models driven by glioma driver mutations, we show that this AS signature could be enhanced by EGFRvIII and inhibited by in situ IDH1 mutation. Functional validations of 2 isoform switching events in CERS5 and MPZL1 show regulations of sphingolipid metabolism and SHP2 signaling, respectively. Analysis of upstream RNA binding proteins reveals PTBP1 as a key regulator of the AS signature where targeting of PTBP1 suppresses tumor growth and promotes the expression of a neuron marker TUJ1 in glioma stem-like cells. Overall, our data highlights the role of AS in affecting glioma malignancy and heterogeneity and its potential as a therapeutic vulnerability for treating adult gliomas.


Assuntos
Processamento Alternativo , Glioma , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Glioma/terapia , Humanos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Animais , Camundongos , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Adulto , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
4.
ACS Med Chem Lett ; 15(2): 258-264, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38352843

RESUMO

Glioblastoma, a prevalent malignant CNS tumor, presents a therapeutic challenge because of resistance to standard treatments, including radiation therapy and temozolomide. Both modalities induce autophagy, thereby paradoxically promoting tumor survival. The cysteine protease ATG4B is implicated in this cellular process, which highlights the enzyme as a viable therapeutic target for glioblastoma. We have developed streamlined syntheses for ATG4B inhibitor NSC185058, its derivatives, and fluorogenic ATG4B substrate pim-FG-PABA-AMC. We leveraged these findings to rapidly identify novel compound MJO445, which demonstrates markedly greater potency biochemically and in cells.

5.
Neuro Oncol ; 26(1): 70-84, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37551745

RESUMO

BACKGROUND: Glioblastoma (GBM) is refractory to current treatment modalities while side effects of treatments result in neurotoxicity and cognitive impairment. Here we test the hypothesis that inhibiting CDK7 or CDK9 would effectively combat GBM with reduced neurotoxicity. METHODS: We examined the effect of a CDK7 inhibitor, THZ1, and multiple CDK9 inhibitors (SNS032, AZD4573, NVP2, and JSH150) on GBM cell lines, patient-derived temozolomide (TMZ)-resistant and responsive primary tumor cells and glioma stem cells (GSCs). Biochemical changes were assessed by western blotting, immunofluorescence, multispectral imaging, and RT-PCR. In vivo, efficacy was assessed in orthotopic and subcutaneous xenograft models. RESULTS: CDK7 and CDK9 inhibitors suppressed the viability of TMZ-responsive and resistant GBM cells and GSCs at low nanomolar concentrations, with limited cytotoxic effects in vivo. The inhibitors abrogated RNA Pol II and p70S6K phosphorylation and nascent protein synthesis. Furthermore, the self-renewal of GSCs was significantly reduced with a corresponding reduction in Sox2 and Sox9 levels. Analysis of TCGA data showed increased expression of CDK7, CDK9, SOX2, SOX9, and RPS6KB1 in GBM; supporting this, multispectral imaging of a TMA revealed increased levels of CDK9, Sox2, Sox9, phospho-S6, and phospho-p70S6K in GBM compared to normal brains. RNA-Seq results suggested that inhibitors suppressed tumor-promoting genes while inducing tumor-suppressive genes. Furthermore, the studies conducted on subcutaneous and orthotopic GBM tumor xenograft models showed that administration of CDK9 inhibitors markedly suppressed tumor growth in vivo. CONCLUSIONS: Our results suggest that CDK7 and CDK9 targeted therapies may be effective against TMZ-sensitive and resistant GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Neoplasias Encefálicas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 9 Dependente de Ciclina/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38009092

RESUMO

Small molecule modulators are important tools to study both basic biology and the complex signaling of protein kinases. The cdc2-like kinases (CLK) are a family of four kinases that have garnered recent interest for their involvement in a diverse set of diseases such as neurodegeneration, autoimmunity, and many cancers. Targeted medicinal chemistry around a CLK inhibitor hit identified through screening of a kinase inhibitor set against a large panel of kinases allowed us to identify a potent and selective inhibitor of CLK1, 2, and 4. Here, we present the synthesis, selectivity, and preliminary biological characterization of this compound - SGC-CLK-1 (CAF-170). We further show CLK2 has the highest binding affinity, and high CLK2 expression correlates with a lower IC50 in a screen of multiple cancer cell lines. Finally, we show that SGC-CLK-1 not only reduces serine arginine-rich (SR) protein phosphorylation but also alters SR protein and CLK2 subcellular localization in a reversible way. Therefore, we anticipate that this compound will be a valuable tool for increasing our understanding of CLKs and their targets, SR proteins, at the level of phosphorylation and subcellular localization.

7.
Cancers (Basel) ; 15(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37760589

RESUMO

Brain tumor-initiating cells (BTICs) and tumor cell plasticity promote glioblastoma (GBM) progression. Here, we demonstrate that clemastine, an over-the-counter drug for treating hay fever and allergy symptoms, effectively attenuated the stemness and suppressed the propagation of primary BTIC cultures bearing PDGFRA amplification. These effects on BTICs were accompanied by altered gene expression profiling indicative of their more differentiated states, resonating with the activity of clemastine in promoting the differentiation of normal oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes. Functional assays for pharmacological targets of clemastine revealed that the Emopamil Binding Protein (EBP), an enzyme in the cholesterol biosynthesis pathway, is essential for BTIC propagation and a target that mediates the suppressive effects of clemastine. Finally, we showed that a neural stem cell-derived mouse glioma model displaying predominantly proneural features was similarly susceptible to clemastine treatment. Collectively, these results identify pathways essential for maintaining the stemness and progenitor features of GBMs, uncover BTIC dependency on EBP, and suggest that non-oncology, low-toxicity drugs with OPC differentiation-promoting activity can be repurposed to target GBM stemness and aid in their treatment.

8.
Acta Neuropathol Commun ; 11(1): 133, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580817

RESUMO

BACKGROUND: Grade 4 glioma is the most aggressive and currently incurable brain tumor with a median survival of one year in adult patients. Elucidating novel transcriptomic and epigenetic contributors to the molecular heterogeneity underlying its aggressiveness may lead to improved clinical outcomes. METHODS: To identify grade 4 glioma -associated 5-hydroxymethylcytosine (5hmC) and transcriptomic features as well as their cross-talks, genome-wide 5hmC and transcriptomic profiles of tissue samples from 61 patients with grade 4 gliomas and 9 normal controls were obtained for differential and co-regulation/co-modification analyses. Prognostic models on overall survival based on transcriptomic features and the 5hmC modifications summarized over genic regions (promoters, gene bodies) and brain-derived histone marks were developed using machine learning algorithms. RESULTS: Despite global reduction, the majority of differential 5hmC features showed higher modification levels in grade 4 gliomas as compared to normal controls. In addition, the bi-directional correlations between 5hmC modifications over promoter regions or gene bodies and gene expression were greatly disturbed in grade 4 gliomas regardless of IDH1 mutation status. Phenotype-associated co-regulated 5hmC-5hmC modules and 5hmC-mRNA modules not only are enriched with different molecular pathways that are indicative of the pathogenesis of grade 4 gliomas, but also are of prognostic significance comparable to IDH1 mutation status. Lastly, the best-performing 5hmC model can predict patient survival at a much higher accuracy (c-index = 74%) when compared to conventional prognostic factor IDH1 (c-index = 57%), capturing the molecular characteristics of tumors that are independent of IDH1 mutation status and gene expression-based molecular subtypes. CONCLUSIONS: The 5hmC-based prognostic model could offer a robust tool to predict survival in patients with grade 4 gliomas, potentially outperforming existing prognostic factors such as IDH1 mutations. The crosstalk between 5hmC and gene expression revealed another layer of complexity underlying the molecular heterogeneity in grade 4 gliomas, offering opportunities for identifying novel therapeutic targets.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Transcriptoma , Glioma/patologia , Prognóstico , Neoplasias Encefálicas/patologia , Mutação , Epigênese Genética , Isocitrato Desidrogenase/genética
9.
Database (Oxford) ; 20232023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37387524

RESUMO

Epigenetic modifications play critical roles in gene regulation and disease pathobiology. Highly sensitive enabling technologies, including microarray- and sequencing-based approaches have allowed genome-wide profiling of cytosine modifications in DNAs in clinical samples to facilitate discovery of epigenetic biomarkers for disease diagnosis and prognosis. Historically, many previous studies, however, did not distinguish the most investigated 5-methylcytosines (5mC) from other modified cytosines, especially the biochemically stable 5-hydroxymethylcytosines (5hmC), which have been shown to have a distinct genomic distribution and regulatory role from 5mC. Notably, during the past several years, the 5hmC-Seal, a highly sensitive chemical labeling technique, has been demonstrated to be a powerful tool for genome-wide profiling of 5hmC in clinically feasible biospecimens (e.g. a few milliliter of plasma or serum). The 5hmC-Seal technique has been utilized by our team in biomarker discovery for human cancers and other complex diseases using circulating cell-free DNA (cfDNA), as well as the characterization of the first 5hmC Human Tissue Map. Convenient access to the accumulating 5hmC-Seal data will allow the research community to validate and re-use these results, potentially providing novel insights into epigenetic contribution to a range of human diseases. Here we introduce the PETCH-DB, an integrated database that was implemented to provide 5hmC-related results generated using the 5hmC-Seal technique. We aim the PETCH-DB to be a central portal, which will be available to the scientific community with regularly updated 5hmC data in clinical samples to reflect current advances in this field. Database URL http://petch-db.org/.


Assuntos
5-Metilcitosina , Pesquisa Biomédica , Humanos , Citosina , Bases de Dados Factuais
10.
Database (Oxford) ; 20232023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37387525

RESUMO

Epigenetic modifications play critical roles in gene regulation and disease pathobiology. Highly sensitive enabling technologies, including microarray- and sequencing-based approaches have allowed genome-wide profiling of cytosine modifications in DNAs in clinical samples to facilitate discovery of epigenetic biomarkers for disease diagnosis and prognosis. Historically, many previous studies, however, did not distinguish the most investigated 5-methylcytosines (5mC) from other modified cytosines, especially the biochemically stable 5-hydroxymethylcytosines (5hmC), which have been shown to have a distinct genomic distribution and regulatory role from 5mC. Notably, during the past several years, the 5hmC-Seal, a highly sensitive chemical labeling technique, has been demonstrated to be a powerful tool for genome-wide profiling of 5hmC in clinically feasible biospecimens (e.g. a few milliliter of plasma or serum). The 5hmC-Seal technique has been utilized by our team in biomarker discovery for human cancers and other complex diseases using circulating cell-free DNA (cfDNA), as well as the characterization of the first 5hmC Human Tissue Map. Convenient access to the accumulating 5hmC-Seal data will allow the research community to validate and re-use these results, potentially providing novel insights into epigenetic contribution to a range of human diseases. Here we introduce the PETCH-DB, an integrated database that was implemented to provide 5hmC-related results generated using the 5hmC-Seal technique. We aim the PETCH-DB to be a central portal, which will be available to the scientific community with regularly updated 5hmC data in clinical samples to reflect current advances in this field. Database URL http://petch-db.org/.


Assuntos
5-Metilcitosina , Pesquisa Biomédica , Humanos , Citosina , Bases de Dados Factuais
11.
Cancer Lett ; 563: 216183, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094736

RESUMO

Cancer is a leading cause of death in humans, with a complex and dynamic nature that makes it challenging to fully comprehend and treat. The Mammalian Sterile 20-Like Kinase 4 (MST4 or STK26) is a serine/threonine-protein kinase that plays a crucial role in cell migration and polarity in both normal and tumor cells via activation of intracellular signaling molecules and pathways. MST4 is involved in tumor cell proliferation, migration and invasion, epithelial-mesenchymal transition (EMT), survival, and cancer metastasis through modulation of downstream signaling pathways including the extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) pathways. Additionally, MST4 interacts with programmed cell death 10 (PDCD10) to promote tumor proliferation and migration. MST4 phosphorylates autophagy related 4B cysteine peptidase (ATG4B) to mediate autophagy signaling, promote tumor cell survival and proliferation, and contribute to treatment resistance. Taken together, MST4 functions as an oncogene and is a promising therapeutic target which deserves further exploration.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Mamíferos/metabolismo , Oncogenes , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Neuro Oncol ; 25(9): 1592-1604, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36988488

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) regulate the etiology of complex diseases and cancers, including glioblastoma (GBM). However, lncRNA-based therapies are limited because the mechanisms of action of many lncRNAs with their binding partners are not completely understood. METHODS: We used transcriptomic and genomic data to analyze correlations between LINC02283 and PDGFRA (platelet-derived growth factor receptor A). The biological functions of the novel lncRNA were assessed in vivo using patient-derived glioma stem-like cells (GSCs), and orthotopic GBM xenografts. Immunoblotting, qRT-PCR, RNA pull down, crosslinked RNA immunoprecipitation, fluorescence in situ hybridization, and antisense oligo-mediated knockdown were performed to explore the regulation of LINC02283 on PDGFRA signaling. Expression of LINC02283 in clinical samples was assessed using pathologically diagnosed GBM patient samples. RESULTS: We identified a novel oncogenic lncRNA, LINC02283, that is highly expressed in the PDGFRA mutation-driven cohort of glioma patients and associated with worse prognosis. LINC02283 gene co-amplifies with the PDGFRA locus and shows high correlation with PDGFRA expression. Deprivation of LINC02283 in GSCs with PDGFRA amplification mutation, attenuated tumorigenicity and enhanced survival in orthotopic GBM xenograft models, while overexpression of LINC02283 in GSCs with wild-type PDGFRA, enhances PDGFRA signaling, and decreases survival. Further, LINC02283 interacts with PDGFRA to enhance its signaling and that of its downstream targets AKT and ERK, thus promoting oncogenesis in GBM. CONCLUSIONS: Our results provide strong evidence of LINC02283 as a regulator of PDGFRA oncogenic activity and GBM malignancy and support the potential of lncRNAs as possible therapeutic targets.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , RNA Longo não Codificante , Humanos , Glioblastoma/patologia , RNA Longo não Codificante/genética , Hibridização in Situ Fluorescente , Glioma/genética , Transformação Celular Neoplásica/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Encefálicas/patologia
13.
Cancers (Basel) ; 14(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36428586

RESUMO

Adult-type diffusely infiltrating gliomas, of which glioblastoma is the most common and aggressive, almost always recur after treatment and are fatal. Improved understanding of therapy-driven tumor evolution and acquired therapy resistance in gliomas is essential for improving patient outcomes, yet the majority of the models currently used in preclinical research are of therapy-naïve tumors. Here, we describe the development of therapy-resistant IDH-wildtype glioblastoma patient-derived xenografts (PDX) through orthotopic engraftment of therapy naïve PDX in athymic nude mice, and repeated in vivo exposure to the therapeutic modalities most often used in treating glioblastoma patients: radiotherapy and temozolomide chemotherapy. Post-temozolomide PDX became enriched for C>T transition mutations, acquired inactivating mutations in DNA mismatch repair genes (especially MSH6), and developed hypermutation. Such post-temozolomide PDX were resistant to additional temozolomide (median survival decrease from 80 days in parental PDX to 42 days in a temozolomide-resistant derivative). However, temozolomide-resistant PDX were sensitive to lomustine (also known as CCNU), a nitrosourea which induces tumor cell apoptosis by a different mechanism than temozolomide. These PDX models mimic changes observed in recurrent GBM in patients, including critical features of therapy-driven tumor evolution. These models can therefore serve as valuable tools for improving our understanding and treatment of recurrent glioma.

14.
Biomedicines ; 10(8)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36009578

RESUMO

For decades, research in cancer biology has been focused on the protein-coding fraction of the human genome. However, with the discovery of non-coding RNAs (ncRNAs), it has become known that these entities not only function in numerous fundamental life processes such as growth, differentiation, and development, but also play critical roles in a wide spectrum of human diseases, including cancer. Dysregulated ncRNA expression is found to affect cancer initiation, progression, and therapy resistance, through transcriptional, post-transcriptional, or epigenetic processes in the cell. In this review, we focus on the recent development and advances in ncRNA biology that are pertinent to their role in glioma tumorigenesis and therapy response. Gliomas are common, and are the most aggressive type of primary tumors, which account for ~30% of central nervous system (CNS) tumors. Of these, glioblastoma (GBM), which are grade IV tumors, are the most lethal brain tumors. Only 5% of GBM patients survive beyond five years upon diagnosis. Hence, a deeper understanding of the cellular non-coding transcriptome might help identify biomarkers and therapeutic agents for a better treatment of glioma. Here, we delve into the functional roles of microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) in glioma tumorigenesis, discuss the function of their extracellular counterparts, and highlight their potential as biomarkers and therapeutic agents in glioma.

15.
Front Cell Dev Biol ; 10: 907423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784465

RESUMO

Non-canonical secretion pathways, collectively known as unconventional protein secretion (UPS), are alternative secretory mechanisms usually associated with stress-inducing conditions. UPS allows proteins that lack a signal peptide to be secreted, avoiding the conventional endoplasmic reticulum-Golgi complex secretory pathway. Molecules that generally rely on the canonical pathway to be secreted may also use the Golgi bypass, one of the unconventional routes, to reach the extracellular space. UPS studies have been increasingly growing in the literature, including its implication in the biology of several diseases. Intercellular communication between brain tumor cells and the tumor microenvironment is orchestrated by various molecules, including canonical and non-canonical secreted proteins that modulate tumor growth, proliferation, and invasion. Adult brain tumors such as gliomas, which are aggressive and fatal cancers with a dismal prognosis, could exploit UPS mechanisms to communicate with their microenvironment. Herein, we provide functional insights into the UPS machinery in the context of tumor biology, with a particular focus on the secreted proteins by alternative routes as key regulators in the maintenance of brain tumors.

16.
Cancer Drug Resist ; 5(2): 368-379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800362

RESUMO

Cancer drug resistance is one of the main barriers to overcome to ensure durable treatment responses. While many pivotal advances have been made in first combination therapies, then targeted therapies, and now broadening out to immunomodulatory drugs or metabolic targeting compounds, drug resistance is still ultimately universally fatal. In this brief review, we will discuss different strategies that have been used to fight drug resistance from synthetic lethality to tumor microenvironment modulation, focusing on the DNA damage response and tumor metabolism both within tumor cells and their surrounding microenvironment. In this way, with a better understanding of both targetable mutations in combination with the metabolism, smarter drugs may be designed to combat cancer drug resistance.

18.
Sci Adv ; 8(25): eabn3471, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731869

RESUMO

Temozolomide (TMZ) is a chemotherapeutic agent that has been the first-line standard of care for the aggressive brain cancer glioblastoma (GBM) since 2005. Although initially beneficial, TMZ resistance is universal and second-line interventions are an unmet clinical need. Here, we took advantage of the known mechanism of action of TMZ to target guanines (G) and investigated G-rich G-quadruplex (G4) and splice site changes that occur upon TMZ resistance. We report that TMZ-resistant GBM has guanine mutations that disrupt the G-rich DNA G4s and splice sites that lead to deregulated alternative splicing. These alterations create vulnerabilities, which are selectively targeted by either the G4-stabilizing drug TMPyP4 or a novel splicing kinase inhibitor of cdc2-like kinase. Last, we show that the G4 and RNA binding protein EWSR1 aggregates in the cytoplasm in TMZ-resistant GBM cells and patient samples. Together, our findings provide insight into targetable vulnerabilities of TMZ-resistant GBM and present cytoplasmic EWSR1 as a putative biomarker.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , DNA/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/metabolismo , Guanina/farmacologia , Humanos , Mutação , RNA , Temozolomida/farmacologia , Temozolomida/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA