Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 619: 369-376, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398767

RESUMO

Materials with adjustable wide-ranging thermal conductivity are desired to tackle the problem of thermal management for electronic devices operating in an extended range of temperature. In this study, graphene aerogels (GAs) are fabricated and transformed from thermal insulators to thermal conductors by high-temperature annealing. The highest through-plane and in-plane thermal conductivity of annealed GA reaches 3.3 and 96 W/m·K, respectively, under 95% compressive strain. Using the annealed GA as thermal interface material leads to superior performance than commercially available products that have higher through-plane thermal conductivity in dissipating heat for high-power electronic devices (e.g., LED lamp). Furthermore, due to excellent elasticity, the thermal resistance of annealed GAs can be reversibly tuned about six-fold by compressive strain. This paves a novel venue in designing thermal management system for devices, which not only need excellent heat dissipation but also good thermal insulation at various operating environments.

2.
J Colloid Interface Sci ; 608(Pt 3): 2407-2413, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34753625

RESUMO

Both high through-plane thermal conductivity and low elastic modulus can reduce thermal interface resistance, which is important for thermal interface materials. The internal porous structure of graphene aerogel (GA) makes it to have a low elastic modulus, which results in its good compressibility. Also, the network structure of GA provides thermal conducting paths, which improve the through-plane thermal conductivity of GA. Annealing GA at 3000 °C helps to remove oxygen-containing functional groups and reduces defects. This greatly improves its crystallinity, which further leads to the improvement of its through-plane thermal conductivity and it has a low modulus of 1.37Mpa. The through-plane thermal conductivity of GA annealed at 3000 °C (GA-3000) was improved as the pressure increased and got to 2.93 W/ m K at a pressure of 1.13 MPa, which is 30 times higher than other graphene-based thermal interface materials (TIMs). These discoveries offer a novel approach for preparing excellent TIMs.

3.
J Hazard Mater ; 141(1): 156-62, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-16901629

RESUMO

A new adsorbent, the fallen phoenix tree's leaf, has been investigated in order to remove methylene blue (MB) from aqueous solutions. Variables of the system, including contact time, leaf dose, solution pH, salt concentration and initial MB concentration, were adopted to study their effects on MB biosorption. The results showed that as the dose of leaf increased, the percentage of MB sorption increased accordingly. There was no significant difference about the quantity of MB adsorbed onto leaf as the pH was within the range 4.5-10.0. The salt concentration has negative effect on MB removal. The equilibrium data were analyzed using the Langmuir and the Freundlich isotherms. The results of non-linear regressive analysis are that the Langmuir isotherm is better fit than the Freundlich isotherm at different temperature according to the values of determined coefficients (R(2)) and chi(2)-statistic (SS). The Langmuir monolayer saturation capacities of MB adsorbed onto leaf are 80.9, 83.8, 89.7mgg(-1) at 295, 309 and 323K, respectively. Using the equilibrium concentration contents obtained at different temperatures, various thermodynamic parameters, such as DeltaG degrees , DeltaH degrees and DeltaS degrees , have been calculated. The thermodynamics parameters of MB/leaf system indicate spontaneous and endothermic process. It was concluded that an increase in temperature be advantage to adsorb MB onto leaf.


Assuntos
Magnoliopsida/química , Azul de Metileno/química , Folhas de Planta/química , Eliminação de Resíduos Líquidos/métodos , Poluentes da Água/química , Adsorção , Cloreto de Cálcio/química , Cloreto de Sódio/química , Temperatura , Termodinâmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA