Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 12: 1380657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026589

RESUMO

Introduction: Dementia and physical disability are serious problems faced by the aging population, and their occurrence and development interact. Methods: Based on data from a national cohort of Chinese people aged 60 years and above from the China Health and Retirement Longitudinal Survey from 2011 to 2018, we applied the group-based trajectory model to identify the heterogeneous trajectories of cognitive function and physical disability in participants with different physical disability levels. Next, multinomial logistic regression models were used to explore the factors affecting these trajectories. Results: The cognitive function trajectories of the Chinese older people could be divided into three characteristic groups: those who maintained the highest baseline level of cognitive function, those with a moderate baseline cognitive function and dramatic progression, and those with the worst baseline cognitive function and rapid-slow-rapid progression. The disability trajectories also fell into three characteristic groups: a consistently low baseline disability level, a low initial disability level with rapid development, and a high baseline disability level with rapid development. Compared with those free of physical disability at baseline, a greater proportion of participants who had physical disability at baseline experienced rapid cognitive deterioration. Education, income, type of medical insurance, gender, and marital status were instrumental in the progression of disability and cognitive decline in the participants. Discussion: We suggest that the Chinese government, focusing on the central and western regions and rural areas, should develop education for the older people and increase their level of economic security to slow the rate of cognitive decline and disability among this age group. These could become important measures to cope with population aging.


Assuntos
Cognição , Disfunção Cognitiva , Pessoas com Deficiência , Humanos , Idoso , Feminino , Masculino , China/epidemiologia , Pessoas com Deficiência/estatística & dados numéricos , Estudos Longitudinais , Pessoa de Meia-Idade , Disfunção Cognitiva/epidemiologia , Idoso de 80 Anos ou mais
2.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895201

RESUMO

Transposable elements (TEs) are abundant in the human genome, and they provide the sources for genetic and functional diversity. The regulation of TEs expression and their functional consequences in physiological conditions and cancer development remain to be fully elucidated. Previous studies suggested TEs are repressed by DNA methylation and chromatin modifications. The effect of 3D chromatin topology on TE regulation remains elusive. Here, by integrating transcriptome and 3D genome architecture studies, we showed that haploinsufficient loss of NIPBL selectively activates alternative promoters at the long terminal repeats (LTRs) of the TE subclasses. This activation occurs through the reorganization of topologically associating domain (TAD) hierarchical structures and recruitment of proximal enhancers. These observations indicate that TAD hierarchy restricts transcriptional activation of LTRs that already possess open chromatin features. In cancer, perturbation of the hierarchical chromatin topology can lead to co-option of LTRs as functional alternative promoters in a context-dependent manner and drive aberrant transcriptional activation of novel oncogenes and other divergent transcripts. These data uncovered a new layer of regulatory mechanism of TE expression beyond DNA and chromatin modification in human genome. They also posit the TAD hierarchy dysregulation as a novel mechanism for alternative promoter-mediated oncogene activation and transcriptional diversity in cancer, which may be exploited therapeutically.

3.
Chem Biol Interact ; 395: 111007, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38642817

RESUMO

Mitomycin C (MC) is an anti-cancer drug which functions by forming interstrand crosslinks (ICLs) between opposing DNA strands. MC analog, 10-decarbamoyl mitomycin C (DMC), unlike MC, has stronger cytotoxic effects on cancer cells with TP53 mutation. We previously demonstrated that MC/DMC could activate p21WAF1/CIP1 in MCF-7 (TP53-proficient) and K562 (TP53 deficient) cells in a TP53-independent mode. We also found that MC/DMC regulate AKT activation in a TP53-dependent manner and that AKT deactivation is not associated with the activation of p21WAF1/CIP1 in response to MC/DMC treatment. RAS proteins are known players in the upstream mediated signaling of p21WAF1/CIP1 activation that leads to control of cell proliferation and cell death. Thus, this prompted us to investigate the effect of both drugs on the expression of RAS proteins and regulation of the MAPK/ERK signaling pathways in MCF-7 and K562 cancer cells. To accomplish this goal, we performed comparative label free proteomics profiling coupled to bioinformatics/complementary phosphoprotein arrays and Western blot validations of key signaling molecules. The MAPK/ERK pathway exhibited an overall downregulation upon MC/DMC treatment in MCF-7 cells but only DMC exhibited a mild downregulation of that same pathway in TP53 mutant K562 cells. Furthermore, treatment of MCF-7 and K562 cell lines with oligonucleotides containing the interstrand crosslinks (ICLs) formed by MC or DMC shows that both ICLs had a stronger effect on the downregulation of RAS protein expression in mutant TP53 K562 cells. We discuss the implication of this regulation of the MAPK/ERK pathway in relation to cellular TP53 status.


Assuntos
Sistema de Sinalização das MAP Quinases , Mitomicina , Proteínas ras , Humanos , Mitomicina/farmacologia , Células K562 , Proteínas ras/metabolismo , Células MCF-7 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA