Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 203(9): 2443-2450, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31578270

RESUMO

Skin tissue resident memory T cells (TRM) provide superior protection to a second infection. In this study, we evaluated the use of topical CpG oligodeoxynucleotide (ODN) as adjuvant to generate skin TRM in mice. Topical or s.c. CpG ODN adjuvant administration at the time of a s.c. Ag injection led to an accumulation of CD103- CD8 T cells in the epidermis. However, only mice with CpG ODN administered topically had significant numbers of CD103+ Ag-specific CD8 T cells persisting in the local epidermal skin, enhanced circulating memory cells in the blood, and showed protection from intradermal challenge with melanoma cells. Generation of Ag-specific CD8 T cells was dependent on TLR9 expression on hematopoietic cells and partially dependent on receptor expression on stromal cells. Topical challenge of immunized mice at a distal site led to significant expansion of Ag-specific T cells in the blood and accumulation in the challenged skin. We demonstrate that local and systemic T cell memory can be generated with topical CpG ODN at the time of s.c. immunization, suggesting a new method of enhancing current vaccine formulations to generate tissue TRM.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Memória Imunológica , Oligodesoxirribonucleotídeos/administração & dosagem , Pele/imunologia , Linfócitos T/fisiologia , Vacinação , Animais , Linhagem Celular Tumoral , Imunidade Inata , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Receptor Toll-Like 9/fisiologia
2.
Vaccine ; 37(1): 80-89, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30478007

RESUMO

Current acellular-pertussis (aP) vaccines appear inadequate for long-term pertussis control because of short-lived efficacy and the increasing prevalence of pertactin-negative isolates which may negatively impact vaccine efficacy. In this study, we added fimbriae (FIM)2 and FIM3 protein to licensed 2-, 3- or 5-component aP vaccines (Pentavac®, Boostrix®, Adacel®, respectively) to assess whether an aP vaccine with enhanced FIM content demonstrates enhanced efficacy. Vaccine-induced protection was assessed in an intranasal mouse challenge model. In addition, potential reactogenicity was measured by biomarkers in a human whole blood assay (WBA) in vitro and benchmarked the responses against licensed whole cell pertussis (wP) and aP vaccines including Easyfive®, Pentavac® and Pentacel®. The results show that commercial vaccines demonstrated reduced efficacy against pertactin-negative versus pertactin-positive strains. However, addition of higher amounts of FIM2/3 to aP vaccines reduced lung colonization and increased vaccine efficacy against a pertactin-negative strain in a dose-dependent manner. Improvements in efficacy were similar for FIM2 and FIM3-expressing strains. Increasing the amount of FIM2/3 proteins in aP formulations did not alter vaccine-induced biomarkers of potential reactogenicity including prostaglandin E2, cytokines and chemokines in human newborn cord and adult peripheral blood tested in vitro. These results suggest that increasing the quantity of FIM proteins in current pertussis vaccine formulations may further enhance vaccine efficacy against B. pertussis infection without increasing the reactogenicity of the vaccine.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Fímbrias/imunologia , Vacina contra Coqueluche/imunologia , Fatores de Virulência de Bordetella/imunologia , Coqueluche/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Biomarcadores/sangue , Bordetella pertussis , Quimiocinas/imunologia , Citocinas/imunologia , Dinoprostona/imunologia , Feminino , Proteínas de Fímbrias/genética , Humanos , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Acelulares/imunologia , Fatores de Virulência de Bordetella/genética , Coqueluche/imunologia
3.
Front Immunol ; 7: 562, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28008331

RESUMO

BACKGROUND: Group B Neisseria meningitidis, an endotoxin-producing Gram-negative bacterium, causes the highest incidence of group B meningococcus (MenB) disease in the first year of life. The Bexsero vaccine is indicated in Europe from 8 weeks of age. Endotoxin components of outer membrane vesicles (OMVs) or soluble lipopolysaccharide (LPS) represent a potential source of inflammation and residual reactogenicity. The purpose of this study was to compare novel candidate MenB vaccine formulations with licensed vaccines, including Bexsero, using age-specific human in vitro culture systems. METHODS: OMVs from wild type- and inactivated lpxL1 gene mutant-N. meningitidis strains were characterized in human neonatal and adult in vitro whole blood assays and dendritic cell (DC) arrays. OMVs were benchmarked against licensed vaccines, including Bexsero and whole cell pertussis formulations, with respect to Th-polarizing cytokine and prostaglandin E2 production, as well as cell surface activation markers (HLA-DR, CD86, and CCR7). OMV immunogenicity was assessed in mice. RESULTS: ΔlpxLI native OMVs (nOMVs) demonstrated significantly less cytokine induction in human blood and DCs than Bexsero and most of the other pediatric vaccines (e.g., PedvaxHib, EasyFive, and bacillus Calmette-Guérin) tested. Despite a much lower inflammatory profile in vitro than Bexsero, ΔlpxLI nOMVs still had moderate DC maturing ability and induced robust anti-N. meningitidis antibody responses after murine immunization. CONCLUSION: A meningococcal vaccine comprised of attenuated LPS-based OMVs with a limited inflammatory profile in vitro induces robust antigen-specific immunogenicity in vivo.

4.
Front Immunol ; 7: 284, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524984

RESUMO

Current influenza vaccines generate humoral immunity, targeting highly variable epitopes and thus fail to achieve long-term protection. T cells recognize and respond to several highly conserved epitopes across influenza serotypes. A strategy of raising strong cytotoxic T cell memory responses to epitopes conserved across serotypes would provide cross serotype protection, eliminating the need for annual vaccination. We explored the adjuvant potential of epicutaneous (ec) and subcutaneous (sc) delivery of CpG oligodeoxynucleotide in conjunction with sc protein immunization to improve protection against influenza A virus (IAV) infections using a mouse model. We found enhanced long-term protection with epicutaneous CpG ODN (ecCpG) compared to subcutaneous CpG ODN (scCpG) as demonstrated by reduced viral titers in the lungs. This correlated with increased antigen-specific CD8 T cells in the airways and the lungs. The memory T cell response after immunization with ecCpG adjuvant was comparable to memory response by priming with IAV infection in the lungs. In addition, ecCpG was more efficient than scCpG in inducing the generation of IFN-γ producing CD4 T cells. The adjuvant effect of ecCpG was accompanied with its ability to modulate tissue-homing molecules on T cells that may direct them to the site of infection. Together, this work provides evidence for using ecCpG to induce strong antibody and memory T cell responses to confer protection against IAV infection.

5.
Clin Vaccine Immunol ; 21(3): 329-39, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24391136

RESUMO

Robust CD8(+) T cell responses are essential for immune protection against intracellular pathogens. Using parenteral administration of ovalbumin (OVA) protein as a model antigen, the effect of the Toll-like receptor 9 (TLR9) agonist, CpG oligodeoxynucleotide (ODN) 1826, as an adjuvant delivered either topically, subcutaneously, or intramuscularly on antigen-specific CD8(+) T cell responses in a mouse model was evaluated. Topical CpG adjuvant increased the frequency of OVA-specific CD8(+) T cells in the peripheral blood and in the spleen. The more effective strategy to administer topical CpG adjuvant to enhance CD8(+) T cell responses was single-dose administration at the time of antigen injection with a prime-boost regimen. Topical CpG adjuvant conferred both rapid and long-lasting protection against systemic challenge with recombinant Listeria monocytogenes expressing the cytotoxic T lymphocyte (CTL) epitope of OVA(257-264) (strain Lm-OVA) in a TLR9-dependent manner. Topical CpG adjuvant induced a higher proportion of CD8(+) effector memory T cells than parenteral administration of the adjuvant. Although traditional vaccination strategies involve coformulation of antigen and adjuvant, split administration using topical adjuvant is effective and has advantages of safety and flexibility. Split administration of topical CpG ODN 1826 with parenteral protein antigen is superior to other administration strategies in enhancing both acute and memory protective CD8(+) T cell immune responses to subcutaneous protein vaccines. This vaccination strategy induces rapid and persistent protective immune responses against the intracellular organism L. monocytogenes.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Bacterianas/imunologia , Linfócitos T CD8-Positivos/imunologia , Listeria monocytogenes/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Administração Tópica , Animais , Vacinas Bacterianas/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA