Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
MedComm (2020) ; 5(4): e469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525108

RESUMO

Motor proteins, encoded by Kinesin superfamily (KIF) genes, are critical for brain development and plasticity. Increasing studies reported KIF's roles in neurodevelopmental disorders. Here, a 6 years and 3 months-old Chinese boy with markedly symptomatic epilepsy, intellectual disability, brain atrophy, and psychomotor retardation was investigated. His parents and younger sister were phenotypically normal and had no disease-related family history. Whole exome sequencing identified a novel heterozygous in-frame deletion (c.265_267delTCA) in exon 3 of the KIF5C in the proband, resulting in the removal of evolutionarily highly conserved p.Ser90, located in its ATP-binding domain. Sanger sequencing excluded the proband's parents and family members from harboring this variant. The activity of ATP hydrolysis in vitro was significantly reduced as predicted. Immunofluorescence studies showed wild-type KIF5C was widely distributed throughout the cytoplasm, while mutant KIF5C was colocalized with microtubules. The live-cell imaging of the cargo-trafficking assay revealed that mutant KIF5C lost the peroxisome-transporting ability. Drosophila models also confirmed p.Ser90del's essential role in nervous system development. This study emphasized the importance of the KIF5C gene in intracellular cargo-transport as well as germline variants that lead to neurodevelopmental disorders and might enable clinicians for timely and accurate diagnosis and disease management in the future.

2.
J Agric Food Chem ; 72(3): 1651-1659, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206807

RESUMO

Monitoring intracellular pyruvate is useful for the exploration of fundamental metabolism and for guiding the construction of yeast cell factories for chemical production. Here, we employed a genetically encoded fluorescent Pyronic biosensor to light up the pyruvate metabolic state in the cytoplasm, nucleus, and mitochondria of Saccharomyces cerevisiae BY4741. A strong correlation was observed between the pyruvate fluctuation in mitochondria and cytoplasm when exposed to different metabolites. Further metabolic analysis of pyruvate uptake and glycolytic dynamics showed that glucose and fructose dose-dependently activated cytoplasmic pyruvate levels more effectively than direct exposure to pyruvate. Meanwhile, the Pyronic biosensor could visually distinguish phenotypes of the wild-type S. cerevisiae BY4741 and the pyruvate-hyperproducing S. cerevisiae TAM at a single-cell resolution, having the potential for high-throughput screening. Overall, Pyronic biosensors targeting different suborganelles contribute to mapping and studying the central carbon metabolism in-depth and guide the design and construction of yeast cell factories.


Assuntos
Técnicas Biossensoriais , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Glicólise , Ácido Pirúvico/metabolismo
3.
Autophagy ; 19(12): 3240-3241, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37565742

RESUMO

Lactate is a glycolysis product that is produced from pyruvate by LDH (lactate dehydrogenase) and plays an important role in physiological and pathological processes. However, whether lactate regulates autophagy is still unknown. We recently reported that LDHA is phosphorylated at serine 196 by ULK1 (unc-51 like kinase 1) under nutrient-deprivation conditions, promoting lactate production. Then, lactate mediates PIK3C3/VPS34 lactylation at lysine 356 and lysine 781 via acyltransferase KAT5/TIP60. PIK3C3/VPS34 lactylation enhances the association of PIK3C3/VPS34 with BECN1 (beclin 1, autophagy related), ATG14 and UVRAG, increases PIK3C3/VPS34 lipid kinase activity, promotes macroautophagy/autophagy and facilitates the endolysosomal degradation pathway. PIK3C3/VPS34 hyperlactylation induces autophagy and plays an essential role in skeletal muscle homeostasis and cancer progression. Overall, this study describes an autophagy regulation mechanism and the integration of two highly conserved life processes: glycolysis and autophagy.


Assuntos
Autofagia , Ácido Láctico , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Lisina/metabolismo , Proteína Beclina-1/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Glicólise
4.
Sci Adv ; 9(22): eadg4993, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267363

RESUMO

Autophagy and glycolysis are highly conserved biological processes involved in both physiological and pathological cellular programs, but the interplay between these processes is poorly understood. Here, we show that the glycolytic enzyme lactate dehydrogenase A (LDHA) is activated upon UNC-51-like kinase 1 (ULK1) activation under nutrient deprivation. Specifically, ULK1 directly interacts with LDHA, phosphorylates serine-196 when nutrients are scarce and promotes lactate production. Lactate connects autophagy and glycolysis through Vps34 lactylation (at lysine-356 and lysine-781), which is mediated by the acyltransferase KAT5/TIP60. Vps34 lactylation enhances the association of Vps34 with Beclin1, Atg14L, and UVRAG, and then increases Vps34 lipid kinase activity. Vps34 lactylation promotes autophagic flux and endolysosomal trafficking. Vps34 lactylation in skeletal muscle during intense exercise maintains muscle cell homeostasis and correlates with cancer progress by inducing cell autophagy. Together, our findings describe autophagy regulation mechanism and then integrate cell autophagy and glycolysis.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases , Lisina , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Lipídeos
5.
Acta Pharm Sin B ; 11(10): 3165-3177, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729307

RESUMO

mediated cancer therapy has achieved remarkable anti-tumor effects in experimental animal models, but the detailed mechanism remains unsolved. In this report, the active involvement of the host immune response in this process was confirmed by comparing the tumor-suppressive effects of Salmonella in immunocompetent and immunodeficient mice bearing melanoma allografts. Since flagella are key inducers of the host immune response during bacterial infection, flagella were genetically disrupted to analyse their involvement in Salmonella-mediated cancer therapy. The results showed that flagellum-deficient strains failed to induce significant anti-tumor effects, even when more bacteria were administered to offset the difference in invasion efficiency. Flagella mainly activate immune cells via Flagellin/Toll-like receptor 5 (TLR5) signalling pathway. Indeed, we showed that exogenous activation of TLR5 signalling by recombinant Flagellin and exogenous expression of TLR5 both enhanced the therapeutic efficacy of flagellum-deficient Salmonella against melanoma. Our study highlighted the therapeutic value of the interaction between Salmonella and the host immune response through Flagellin/TLR5 signalling pathway during Salmonella-mediated cancer therapy, thereby suggesting the potential application of TLR5 agonists in the cancer immune therapy.

6.
Cancer Sci ; 111(10): 3503-3515, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32726482

RESUMO

Hepatocellular carcinoma (HCC) represents the majority of liver cancer and is the fourth most common cause of cancer-related death. Although advances in molecular targeted therapy have shown promise, none of these agents has yet demonstrated significant clinical benefit. Bromo- and extraterminal domain (BET) protein inhibitors have been considered potential therapeutic drugs for HCC but the biological activity remains unclear. This study found that BET protein inhibition did not effectively suppress the progression of HCC, using a transgenic HCC mouse model. Mechanistically, the BET protein inhibitor JQ1 upregulated the expression of programmed cell death-ligand 1 (PD-L1) on the plasma membrane in vivo and in vitro. Moreover, JQ1 enhanced the expression of Rab8A, which upregulated the expression of PD-L1 on the plasma membrane. This study also showed that JQ1 combined with anti-PD-L1 Ab effectively suppressed HCC progression, and this benefit was obtained by enhancing the activation and cytotoxic capabilities of CD8 T cells. These results revealed the crucial role and regulation of BET protein inhibition on the expression of PD-L1 in HCC. Thus, combining BET protein inhibition with immune checkpoint blockade offers an efficient therapeutic approach for HCC.


Assuntos
Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Proteínas/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Células Hep G2 , Humanos , Imunoterapia/métodos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular/métodos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
7.
Annu Rev Anal Chem (Palo Alto Calif) ; 13(1): 293-314, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32119572

RESUMO

As the core component of cell metabolism, central carbon metabolism, consisting of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle converts nutrients into metabolic precursors for biomass and energy to sustain the life of virtually all extant species. The metabolite levels or distributions in central carbon metabolism often change dynamically with cell fates, development, and disease progression. However, traditional biochemical methods require cell lysis, making it challenging to obtain spatiotemporal information about metabolites in living cells and in vivo. Genetically encoded fluorescent sensors allow the rapid, sensitive, specific, and real-time readout of metabolite dynamics in living organisms, thereby offering the potential to fill the gap in current techniques. In this review, we introduce recent progress made in the development of genetically encoded fluorescent sensors for central carbon metabolism and discuss their advantages, disadvantages, and applications. Moreover, several future directions of metabolite sensors are also proposed.


Assuntos
Carbono/metabolismo , Proteínas Luminescentes/metabolismo , Técnicas Biossensoriais , Proteínas Luminescentes/genética , Imagem Óptica
8.
Science ; 366(6464): 460-467, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31649195

RESUMO

The nucleotide oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2) are intracellular pattern-recognition proteins that activate immune signaling pathways in response to peptidoglycans associated with microorganisms. Recruitment to bacteria-containing endosomes and other intracellular membranes is required for NOD1/2 signaling, and NOD1/2 mutations that disrupt membrane localization are associated with inflammatory bowel disease and other inflammatory conditions. However, little is known about this recruitment process. We found that NOD1/2 S-palmitoylation is required for membrane recruitment and immune signaling. ZDHHC5 was identified as the palmitoyltransferase responsible for this critical posttranslational modification, and several disease-associated mutations in NOD2 were found to be associated with defective S-palmitoylation. Thus, ZDHHC5-mediated S-palmitoylation of NOD1/2 is critical for their ability to respond to peptidoglycans and to mount an effective immune response.


Assuntos
Aciltransferases/metabolismo , Lipoilação , Proteína Adaptadora de Sinalização NOD1/química , Proteína Adaptadora de Sinalização NOD2/química , Transdução de Sinais , Animais , Cisteína/química , Células HCT116 , Células HEK293 , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidoglicano , Fagossomos/imunologia , Fagossomos/microbiologia , Processamento de Proteína Pós-Traducional , Células RAW 264.7 , Salmonella typhimurium
9.
Theranostics ; 9(13): 3840-3852, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281517

RESUMO

Background and aims: Biological mechanisms that control liver regeneration remain poorly defined. However, these mechanisms are remarkable issues in the clinic that affect management of hepatic loss caused by liver surgery, traumatic injury, chronic infection, or liver poisoning. Increasing evidence has shown that various growth factors, cytokines, and metabolic signaling pathways affect the liver regenerative process. Our aim is to study the effect of bromodomain and extraterminal (BET) protein inhibition on liver regeneration and its mechanism. Methods: We studied the role of BET protein inhibitor, JQ1, in liver regeneration in a mouse model after 70% partial hepatectomy (PH). We evaluated yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) and Notch signaling pathways, which were affected by BET protein inhibitor in mouse hepatic tissues and primary hepatocytes in vivo and AML12 cell lines in vitro. We evaluated the relationship of YAP/TAZ and Notch signaling pathway using YAP/TAZ pathway inhibitor in liver regeneration in vivo. Moreover, we analyzed the relationship of YAP/TAZ and Notch signaling pathways via overexpression or RNA silencing of Yap in AML12 cells. Furthermore, we used Yap overexpression mouse model to examine whether it can rescue liver regeneration damage caused by inhibition of BET proteins. Results: In this study, we report that BET protein inhibitor JQ1 molecule impairs the early phase of liver regeneration in a mouse model after 70% PH. Mechanistically, YAP/TAZ and Notch1-NICD pathways were suppressed by BET protein inhibitor in mouse hepatic tissues and primary hepatocytes in vivo and mouse AML12 cell lines in vitro. By using YAP/TAZ pathway inhibitor, we confirmed that the liver regeneration and the activation of Notch pathway were impaired by the inhibition of YAP/TAZ pathway in vivo. Furthermore, the study showed that Yap knockdown by shRNA in normal mouse hepatic cell line downregulated Notch1 signal transduction, whereas Yap overexpression promoted Notch1-NICD signals. Specific overexpression of Yap in mouse liver could rescue the effect of BET protein inhibition on liver regeneration injury. Conclusion: These results revealed the crucial role of the YAP/TAZ-Notch1-NICD axis in liver regeneration. Therefore, BET protein inhibitors must be used in caution in the treatment of hepatic diseases by reason of its suppressive roles in liver regeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regeneração Hepática , Receptor Notch1/química , Receptor Notch1/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Animais , Proliferação de Células , Regulação para Baixo , Hepatectomia , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Domínios Proteicos , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Proteínas de Sinalização YAP
10.
Autophagy ; 15(6): 1120-1121, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30894088

RESUMO

Recently, we identified a vertebrate-specific macroautophagy/autophagy regulator, RUBCNL/Pacer, which promotes autolysosome formation by engaging the class III phosphatidylinositol 3-kinase (PtdIns3K) and HOPS complexes. Hepatocyte-specific rubcnl knockout in mice results in impaired autophagy flux, glycogen and lipid accumulation, and liver fibrosis. We further showed that under nutrient-rich conditions RUBCNL is inactivated by MTORC1-mediated phosphorylation. When nutrients are insufficient, RUBCNL is dephosphorylated, which facilitates its acetylation by the activated GSK3-KAT5/TIP60 pathway. RUBCNL acetylation significantly enhances HOPS complex recruitment, which eventually results in more efficient autophagosome maturation and lipid metabolism both in vitro and in vivo. Therefore, our work not only demonstrates that RUBCNL is essential for hepatic autophagy and liver homeostasis, but also reveals a signal integration mechanism involved in late stages of autophagy and lipid metabolism. Interestingly, these in vitro and in vivo functional data on RUBCNL are partially the opposite of the results from RUBCN/Rubicon studies that were either obtained by us or others. This implies a dual molecular switch model that is controlled by RUBCNL and RUBCN in modulation of autophagosome maturation and lipid metabolism.


Assuntos
Autofagossomos , Autofagia , Animais , Quinase 3 da Glicogênio Sintase , Peptídeos e Proteínas de Sinalização Intracelular , Metabolismo dos Lipídeos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos
11.
Mol Cell ; 73(4): 788-802.e7, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30704899

RESUMO

mTORC1 and GSK3 play critical roles in early stages of (macro)autophagy, but how they regulate late steps of autophagy remains poorly understood. Here we show that mTORC1 and GSK3-TIP60 signaling converge to modulate autophagosome maturation through Pacer, an autophagy regulator that was identified in our recent study. Hepatocyte-specific Pacer knockout in mice results in impaired autophagy flux, glycogen and lipid accumulation, and liver fibrosis. Under nutrient-rich conditions, mTORC1 phosphorylates Pacer at serine157 to disrupt the association of Pacer with Stx17 and the HOPS complex and thus abolishes Pacer-mediated autophagosome maturation. Importantly, dephosphorylation of Pacer under nutrient-deprived conditions promotes TIP60-mediated Pacer acetylation, which facilitates HOPS complex recruitment and is required for autophagosome maturation and lipid droplet clearance. This work not only identifies Pacer as a regulator in hepatic autophagy and liver homeostasis in vivo but also reveals a signal integration mechanism involved in late stages of autophagy and lipid metabolism.


Assuntos
Autofagossomos/enzimologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Quinase 3 da Glicogênio Sintase/metabolismo , Metabolismo dos Lipídeos , Fígado/enzimologia , Lisina Acetiltransferase 5/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Transativadores/metabolismo , Acetilação , Animais , Autofagossomos/patologia , Proteínas Relacionadas à Autofagia/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Quinase 3 da Glicogênio Sintase/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Gotículas Lipídicas/metabolismo , Fígado/patologia , Lisina Acetiltransferase 5/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Fosfato/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Transdução de Sinais , Transativadores/genética , Proteínas Supressoras de Tumor
12.
Theranostics ; 7(8): 2250-2260, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740548

RESUMO

The weakened tumour colonization of attenuated Salmonella has severely hampered its clinical development. In this study, we investigated whether an anti-inflammation and antiangiogenesis compound triptolide could improve the efficacy of VNP20009, a highly attenuated Salmonella strain, against mice melanoma. By comparing the effects of conventional VNP20009 monotherapy and a combination therapy that uses both triptolide and VNP20009, we found that triptolide significantly improved the tumour colonization of VNP20009 by reducing the number of infiltrated neutrophils in the melanoma, which led to a larger necrotic area in the melanoma. Moreover, the combination therapy suppressed tumour angiogenesis by reducing the expression of VEGF in a synergistic manner, retarding the growth of the melanoma. Our study revealed that triptolide could significantly enhance the antitumour effect of VNP20009 by modulating tumour angiogenesis and the host immune response, providing a new understanding of the strategy to improve Salmonella-mediated tumour therapy.


Assuntos
Diterpenos/metabolismo , Diterpenos/farmacologia , Imunossupressores/metabolismo , Imunossupressores/farmacologia , Melanoma/terapia , Fenantrenos/metabolismo , Fenantrenos/farmacologia , Salmonella/efeitos dos fármacos , Salmonella/crescimento & desenvolvimento , Animais , Terapia Biológica/métodos , Terapia Combinada/métodos , Modelos Animais de Doenças , Compostos de Epóxi/metabolismo , Compostos de Epóxi/farmacologia , Melanoma/microbiologia , Melanoma/patologia , Camundongos Endogâmicos C57BL , Necrose , Neovascularização Patológica/tratamento farmacológico , Neutrófilos/imunologia , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
13.
Mol Cell ; 65(6): 1029-1043.e5, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28306502

RESUMO

Class III PI3-kinase (PI3KC3) is essential for autophagy initiation, but whether PI3KC3 participates in other steps of autophagy remains unknown. The HOPS complex mediates the fusion of intracellular vesicles to lysosome, but how HOPS specifically tethers autophagosome to lysosome remains elusive. Here, we report Pacer (protein associated with UVRAG as autophagy enhancer) as a regulator of autophagy. Pacer localizes to autophagic structures and positively regulates autophagosome maturation. Mechanistically, Pacer antagonizes Rubicon to stimulate Vps34 kinase activity. Next, Pacer recruits PI3KC3 and HOPS complexes to the autophagosome for their site-specific activation by anchoring to the autophagosomal SNARE Stx17. Furthermore, Pacer is crucial for the degradation of hepatic lipid droplets, the suppression of Salmonella infection, and the clearance of protein aggregates. These results not only identify Pacer as a crucial multifunctional enhancer in autophagy but also uncover both the involvement of PI3KC3 and the mediators of HOPS's specific tethering activity in autophagosome maturation.


Assuntos
Autofagossomos/enzimologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas à Autofagia/genética , Endossomos/enzimologia , Ativação Enzimática , Células HEK293 , Células HeLa , Células Hep G2 , Hepatócitos/enzimologia , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Gotículas Lipídicas/metabolismo , Lisossomos/enzimologia , Fusão de Membrana , Agregados Proteicos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Qa-SNARE/genética , Interferência de RNA , Salmonella typhimurium/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Transporte Vesicular/genética
14.
Oncotarget ; 7(12): 14940-50, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26910836

RESUMO

Drug resistance remains an obstacle hindering the success of chemotherapy. Cancer stem cells (CSCs) have been recently found to confer resistance to chemotherapy. Therefore functional markers of CSCs should be discovered and specific therapies targeting these cells should be developed. In our investigation, a small population of B16F10 cells which was positive for ATP-binding cassette sub-family B member 5 (ABCB5) was isolated. This population displayed characteristics similar to those of CSCs and ABCB5 was identified to confer tumor growth and drug resistance in B16F10 cell line. Although targeting ABCB5 by small short interfering RNA delivered by VNP20009 failed to inhibit tumor growth, the combined treatment of VNP-shABCB5 and chemotherapy can act synergistically to delay tumor growth and enhance survival time in a primary B16F10 mice model. Results suggest that the combined treatment of VNP-shABCB5 and chemotherapy can improve the efficacy of chemotherapeutic drugs. Therefore, this combination therapy is of potential significance for melanoma treatment.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Vacinas Bacterianas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , RNA Interferente Pequeno , Subfamília B de Transportador de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antineoplásicos Alquilantes/farmacologia , Apoptose , Proliferação de Células , Ciclofosfamida/farmacologia , Quimioterapia Combinada , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas
15.
Cancer Biol Ther ; 15(8): 1068-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24842165

RESUMO

Bacteria are highly versatile and useful tools that could deliver short interfering RNA. In this study, a phoP/phoQ double-deleted Salmonella Typhimurium named VNP(PhoP/Q(-)) based on the genetic background of VNP20009. The biological safety and function of VNP(PhoP/Q(-)) were also analyzed. Our study revealed the following results: (1) VNP(PhoP/Q(-)) exhibited lower titers in tumor-free livers and spleens than VNP20009, (2) The survival of VNP(PhoP/Q(-)) in macrophages and 4T1 tumor cells was significantly reduced compared with that of VNP20009, (3) The tumor-targeting ability of VNP(PhoP/Q(-)) was significantly enhanced compared with that of VNP20009, and the anticancer effects of VNP(pPhoP/Q(-)) and VNP20009 on tumor-bearing mice were similar, (4) VNP(PhoP/Q(-)) could release an shRNA-expressing plasmid and express the EGFP reporter gene in tumor tissue. Therefore, VNP(PhoP/Q(-)) exhibited a better safety level in tumor-free mice and elicited an anti-tumor effect on tumor-bearing mice. Moreover, VNP(PhoP/Q(-)) could release an shRNA-expressing plasmid into the cytoplasm of host cells to silence targeted genes.


Assuntos
Vacinas Bacterianas/genética , Neoplasias Mamárias Animais/terapia , RNA Interferente Pequeno/metabolismo , Salmonella typhimurium/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Terapia Genética , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fígado/patologia , Masculino , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos Endogâmicos BALB C , Mutação , RNA Interferente Pequeno/genética , Baço/patologia
16.
Curr Gene Ther ; 14(2): 75-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24606115

RESUMO

Histidine-proline-rich glycoprotein (HPRG) is a plasma protein of vertebrates, which has potent antiangiogenic and tumor vessel normalization properties. Attenuated Salmonella Typhimurium strain VNP20009 preferentially accumulates and replicates in hypoxic tumor regions. In this study, we engineered VNP20009 to express HPRG under the control of a hypoxia-induced NirB promoter and evaluated the efficacy of the VNP20009-mediated targeted expressionof HPRG (VNP-pNHPRG) on tumor growth in primary and metastatic tumor models. When VNP-pNHPRG was administered to melanoma tumor mice by intraperitoneal injection, the NirB promoter controlled HPRG expression in tumor, which inhibited tumor vessel density and areas as well as regulated vascular normalization. VNP-pNHPRG significantly delayed tumor growth and enhanced survival time in primary B16F10 mice model and markedly suppressed lung metastatic tumor growth and prolonged survival time in B16F10 metastatic tumor models. Furthermore, VNP-pNHPRG down-regulated the HIF-1α-VEGF/Ang-2 signal pathway by altering the hypoxic tumor microenvironment. These results showed that VNP20009-mediated targeted expression of HPRG provides a novel cancer gene therapeutic approach for the treatment of primary and metastatic cancer.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Antineoplásicos/administração & dosagem , Vasos Sanguíneos/efeitos dos fármacos , Glicoproteínas/administração & dosagem , Neovascularização Patológica/tratamento farmacológico , Proteínas/administração & dosagem , Inibidores da Angiogênese/genética , Inibidores da Angiogênese/metabolismo , Animais , Antineoplásicos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Cancer Sci ; 103(2): 325-33, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22054098

RESUMO

Attenuated Salmonella typhimurium (S. typhimurium) strains can selectively grow and express exogenous genes in tumors for targeted therapy. We engineered S. typhimurium strain VNP20009 to secrete tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) under the control of a hypoxia-induced nirB promoter and examined the efficacy of Salmonella-mediated targeted expression of TRAIL in mice bearing melanoma tumor and in TRAIL-resistant RM-1 tumor. We found that VNP preferentially accumulated in tumor tissues and the nirB promoter effectively drove targeted expression of TRAIL. Compared with recombinant TRAIL protein and VNP20009 combination therapy, VNP20009 expressing TRAIL significantly suppressed melanoma growth but failed to suppress RM-1 tumor growth. Furthermore, we confirmed that VNP20009 expressing TRAIL yielded its antitumor effect by inducing melanoma apoptosis. Our findings indicate that Salmonella-mediated tumor-targeted therapy with TRAIL could reduce tumor growth and extend host survival.


Assuntos
Terapia Genética , Melanoma Experimental/terapia , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese
18.
J Ethnopharmacol ; 134(3): 624-9, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21220004

RESUMO

AIM OF THE STUDY: To investigate the immunological regulation of Guizhi Fuling Capsule (GZFLC) on rat endometriosis. MATERIALS AND METHODS: Twenty-seven rats, in which endometriotic implants were induced by transplanting autologous uterine tissue to the peritoneum, were randomly divided into three groups equally: (1) the GZFLC group of low dose (480 mg/kg/day); (2) the GZFLC group of high dose (1,920 mg/kg/day); and (3) the model group(saline solution). Another 10 rats were treated as sham operation group. After rats were treated for four weeks, we examined the alterations of implants volume, the percentage of CD4(+) T lympholeukocyte, the activity of NK cell and the expression of cytokines (MCP-1 and ICAM-1) on each group. RESULTS: Statistical analysis showed that posttreatment volumes were significantly reduced compared with pretreatment in GZFLC groups, whereas there was no significant change in the model group. The percentage of CD4(+) T lympholeukocyte and the activity of NK cell in GZFLC groups significantly increased to the level of the sham group compared with the model. RT-PCR and immunohistochemistry showed that the endometria of the sham operation and treatment groups were similar on expression level of MCP-1 and ICAM-1. CONCLUSIONS: GZFLC plays an important role in the regression of endometriotic implants by immunological regulation in the rat model.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Endometriose/tratamento farmacológico , Animais , Sequência de Bases , Linfócitos T CD4-Positivos/imunologia , Quimiocina CCL2/metabolismo , Primers do DNA , Modelos Animais de Doenças , Endometriose/imunologia , Feminino , Molécula 1 de Adesão Intercelular/metabolismo , Células Matadoras Naturais/imunologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Amino Acids ; 39(5): 1545-52, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20512388

RESUMO

Antimicrobial peptide CM4 is a small cationic peptide with broad-spectrum activities against bacteria, fungi, and tumor cells. Different strategies have been developed to produce small antibacterial peptides using recombinant techniques. To date, no efforts to obtain large quantities of active recombinant CM4 have been reported. In order to establish a bacterium-based CM4 production system, CM4 was cloned into pET28a and expressed with Npro mutant (EDDIE) fusion. CM4 expressed as EDDIE are deposited as inclusion bodies. On in vitro refolding by switching from chemotropic to kosmotropic conditions, the fusion partner is released from the C-terminal end of the autoprotease by self-cleavage, leaving CM4 protein with an authentic N terminus. Purified CM4 was separated on Ni2+-chelating chromatography column and cation-exchange chromatography column. Mass spectroscopic analysis indicated the protein to be 4132.56 Dalton, which equalled the theoretically expected mass. N-terminal sequencing of CM4 showed the sequence corresponded to the native protein. The recombinant CM4 exhibited the same antimicrobial and anti-tumor activity as reported previously. The expression strategy presented in this study allows convenient high yield and easy purification of recombinant CM4 with native sequences.


Assuntos
Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Escherichia coli/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Vírus da Febre Suína Clássica , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA