Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(51): 21593-21604, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-37955649

RESUMO

Decades of research have established the toxicity of soot particles resulting from incomplete combustion. However, the unique chemical compounds responsible for adverse health effects have remained uncertain. This study utilized mass spectrometry to analyze the chemical composition of extracted soot organics at three oxidation states, aiming to establish quantitative relationships between potentially toxic chemicals and their impact on human alveolar basal epithelial cells (A549) through metabolomics-based evaluations. Targeted analysis using MS/MS indicated that particles with a medium oxidation state contained the highest total abundance of compounds, particularly oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) composed of fused benzene rings and unsaturated carbonyls, which may cause oxidative stress, characterized by the upregulation of three specific metabolites. Further investigation focused on three specific OPAH standards: 1,4-naphthoquinone, 9-fluorenone, and anthranone. Pathway analysis indicated that exposure to these compounds affected transcriptional functions, the tricarboxylic acid cycle, cell proliferation, and the oxidative stress response. Biodiesel combustion emissions had higher concentrations of PAHs, OPAHs, and nitrogen-containing PAHs (NPAHs) compared with other fuels. Quinones and 9,10-anthraquinone were identified as the dominant compounds within the OPAH category. This knowledge enhances our understanding of the compounds contributing to adverse health effects observed in epidemiological studies and highlights the role of aerosol composition in toxicity.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Humanos , Compostos Policíclicos/análise , Fuligem/análise , Fuligem/química , Fuligem/toxicidade , Espectrometria de Massas em Tandem , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Pulmão , Oxigênio/análise , Metaboloma , Poluentes Atmosféricos/análise , Emissões de Veículos/análise
2.
World J Microbiol Biotechnol ; 30(7): 1985-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24522980

RESUMO

In this study, we developed a novel technique for preparing polyvinyl alcohol (PVA) hydrogel as an immobilizing matrix by the addition of sodium bicarbonate. This resulted in an increase in the specific surface area of PVA_sodium bicarbonate (PVA_SB) hydrogel beads to 65.23 m(2) g(-1) hydrogel beads, which was approximately 85 and 14 % higher than those of normal PVA and PVA_sodium alginate (PVA_SA) hydrogel beads, respectively. The D e value of PVA_SB hydrogel beads was calculated as 7.49 × 10(-4) cm(2) s(-1), which was similar to the D e of PVA_SA hydrogel beads but nearly 38 % higher than that of the normal PVA hydrogel beads. After immobilization with nitrifying biomass, the oxygen uptake rate and the ammonium oxidation rate of nitrifying biomass entrapped in PVA_SB hydrogel beads were determined to be 19.53 mg O2 g MLVSS(-1) h(-1) and 10.59 mg N g MLVSS(-1) h(-1), which were 49 and 43 % higher than those of normal PVA hydrogel beads, respectively. Scanning electron microscopy observation of the PVA_SB hydrogel beads demonstrated relatively higher specific surface area and revealed loose microstructure that was considered to provide large spaces for microbial growth. This kind of structure was also considered beneficial for reducing mass transfer resistance and increasing pollutant uptake.


Assuntos
Biomassa , Álcool de Polivinil/química , Bicarbonato de Sódio/química , Microscopia Eletrônica de Varredura
3.
Bioresour Technol ; 142: 490-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23759432

RESUMO

In this study, we explored the effects of Fe(II) on the activity of anammox biomass both in short and long terms. With the influent Fe(II) at 0.09 and 0.12 mM, continuous experiments demonstrated that the nitrogen removal rates increased 32.2% and 29.9% compared to that with normal Fe(II) level (0.03 mM). Influent Fe(II) variation could affect the total Fe, heme c levels and hydrazine dehydrogenase activity. At the Fe(II) concentration of 0.09 mM, the total Fe, heme c levels inside anammox cell and hydrazine dehydrogenase activity could increase about 2.0, 2.1 and 2.35 folds as much as that with normal Fe(II) level. However, when the Fe(II) elevated to 0.18 mM, it would cause a mal-effect on anammox bacteria and further deteriorate nitrogen removal performance. It was indicated that the appropriate increase of Fe(II) was beneficial for more heme c synthesis, enhancement of hydrazine dehydrogenase activity, the growth of anammox bacteria.


Assuntos
Compostos de Amônio/metabolismo , Biomassa , Compostos Ferrosos/química , Reatores Biológicos , Heme/análogos & derivados , Heme/química , Reação em Cadeia da Polimerase em Tempo Real
4.
Bioresour Technol ; 124: 520-5, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23036909

RESUMO

This study examined long-term effect of MnO(2) powder (average diameter of 4-7 µm) on nitrogen removal in anammox process. Two lab-scale up-flow anammox reactors were operated for 380 days, one with and one without MnO(2) powder addition. During the period when only substrate concentrations varied, the maximum nitrogen removal rate in the reactor with MnO(2) addition reached 920.9 g-N/m(3)/d. This value was 2-folds higher than that (464.6 g-N/m(3)/d) of the reactor without MnO(2) addition. The crude enzyme activities of the anammox biomass from the two reactors was measured as 0.531±0.019 and 0.298±0.007 µmol cytochrome c reduced/mg protein/min, respectively. Transmission electron microscopy observation demonstrated more undefined particles existing inside anammox bacterial cell in the reactor with MnO(2) powder addition. Furthermore, filament-like structures inside anammoxosome were observed, which formed a net-like structure with particles as the connecting nodes. The experiment results demonstrated that MnO(2) improved nitrogen removal performance of anammox process.


Assuntos
Compostos de Manganês/química , Nitrogênio/isolamento & purificação , Óxidos/química , Pós , Biomassa , Reatores Biológicos , Microscopia Eletrônica de Transmissão
5.
Biodegradation ; 20(1): 117-24, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18651231

RESUMO

Anammox process has attracted considerable attention in the recent years as an alternative to conventional nitrogen removal technologies. In this study, a column type reactor using a novel net type acrylic fiber (Biofix) support material was used for anammox treatment. The Biofix reactor was operated at a temperature of 25 degrees C (peak summer temperature, 31.5 degrees C). During more than 340 days of operation for synthetic wastewater treatment, the nitrogen loading rates of the reactor were increased to 3.6 kg-N/m(3)/d with TN removal efficiencies reaching 81.3%. When the reactor was used for raw anaerobic sludge digester liquor treatment, an average TN removal efficiency of 72% was obtained with highest removal efficiency of 81.6% at a nitrogen loading rate of 2.2 kg-N/m(3)/d. Results of extracellular polymeric substances (EPS) quantification revealed that protein was the most abundant component in the granular sludge and was found to be almost twice than that in the sludge attached to the biomass carriers. The anammox granules in the Biofix reactor illustrated a dense morphology substantiated by scanning electron microscopy and EPS results. The results of DNA analyses indicated that the anammox strain KSU-1 might prefer relatively low nutrient levels, while the anammox strain KU2 strain might be better suited at high nutrient concentration. Other types of bacteria were also identified with the potential of consuming dissolved oxygen in the influent and facilitating survival of anammox bacteria under aerobic conditions.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/ultraestrutura , Biodegradação Ambiental , DNA Ribossômico , Microscopia Eletrônica de Varredura , Esgotos/microbiologia
6.
Water Sci Technol ; 58(6): 1335-41, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18845875

RESUMO

The anammox process, as an alternative to conventional nitrogen removal technologies, has abstracted much attention in recent years. In this study, one column-type reactor using a novel support material--net type acrylic fiber (Biofix)--was used for anammox treatment. The Biofix reactor was operated at 25 degrees C (peak summer temperature, 31.5 degrees C). Over 330 days of operation for synthetic wastewater treatment, the nitrogen loading rates of the reactor were increased to 3.6 kg-N/m3/d and T-N removal efficiencies reached to 81.3%. For the practical anaerobic sludge digester liquor treatment, the average TN removal efficiency of 72% was obtained. A protein substance was shown to be the most abundant extracellular polymeric substances (EPS) in the granular sludge with almost two times more in the attached sludge of the Biofix reactor. Considering the EPS levels and observation by scanning electron microscopy, the anammox granules in the Biofix reactor were showing dense state. Results of DNA analyses indicated that the KSU-1 strain might prefer relatively low nutrient levels, while the KU2 strain might be better suited for the high media concentration. Other kinds of bacteria were also identified with the potentials for consuming the dissolved oxygen in the influent and facilitating anammox bacteria surviving under aerobic conditions.


Assuntos
Amônia/metabolismo , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Amônia/isolamento & purificação , Anaerobiose , Biodegradação Ambiental , Biomassa , Nitrogênio/isolamento & purificação , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA