RESUMO
Variability in genes involved in drug pharmacokinetics or drug response can be responsible for suboptimal treatment efficacy or predispose to adverse drug reactions. In addition to common genetic variations, large-scale sequencing studies have uncovered multiple rare genetic variants predicted to cause functional alterations in genes encoding proteins implicated in drug metabolism, transport and response. To understand the functional importance of rare genetic variants in DPYD, a pharmacogene whose alterations can cause severe toxicity in patients exposed to fluoropyrimidine-based regimens, massively parallel sequencing of the exonic regions and flanking splice junctions of the DPYD gene was performed in a series of nearly 3000 patients categorized according to pre-emptive DPD enzyme activity using the dihydrouracil/uracil ([UH2]/[U]) plasma ratio as a surrogate marker of DPD activity. Our results underscore the importance of integrating next-generation sequencing-based pharmacogenomic interpretation into clinical decision making to minimize fluoropyrimidine-based chemotherapy toxicity without altering treatment efficacy.
Assuntos
Antimetabólitos Antineoplásicos , Di-Hidrouracila Desidrogenase (NADP) , Testes Farmacogenômicos , Humanos , Antimetabólitos Antineoplásicos/efeitos adversos , Biomarcadores , Di-Hidrouracila Desidrogenase (NADP)/genética , Fluoruracila/efeitos adversos , Genótipo , Farmacogenética/métodos , Testes Farmacogenômicos/métodosRESUMO
Whether the LSC17 gene expression can improve risk stratification in the context of next generation sequencing-based risk stratification and measurable residual disease (MRD) in patients with intensively treated AML has not been explored. We analyzed LSC17 in 504 adult patients prospectively treated in the ALFA-0702 trial. RUNX1 or TP53 mutations were associated with higher LSC1 scores while CEBPA and NPM1 mutations were associated with lower scores. Patients with high LSC17 scores had a lower rate of complete response (CR) in a multivariable analysis (odds ratio, 0.41; P = .0007), accounting for European LeukemiaNet 2022 (ELN22), age, and white blood cell count (WBC). LSC17-high status was associated with shorter overall survival (OS) (3-year OS: 70.0% vs 52.7% in patients with LSC17-low status; P < .0001). In a multivariable analysis considering ELN22, age, and WBC, patients with LSC17-high status had shorter disease-free survival (DFS) (hazard ratio [HR], 1.36; P = .048) than those with LSC17-low status. In 123 patients with NPM1-mutated AML in CR, LSC17-high status predicted poorer DFS (HR, 2.34; P = .01), independent of age, WBC, ELN22 risk, and NPM1-MRD. LSC-low status and negative NPM1-MRD identified a subset comprising 48% of patients with mutated NPM1 with a 3-year OS from CR of 93.1% compared with 60.7% in those with LSC17-high status and/or positive NPM1-MRD (P = .0001). Overall, LSC17 assessment refines genetic risk stratification in adult patients with AML treated intensively. Combined with MRD, LSC17 identifies a subset of patients with NPM1-mutated AML with excellent clinical outcome.
Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Adulto , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Indução de Remissão , Intervalo Livre de Doença , Fatores de Risco , Neoplasia Residual/genéticaRESUMO
Tandem duplications (TDs) of the UBTF gene have been recently described as a recurrent alteration in pediatric acute myeloid leukemia (AML). Here, by screening 1946 newly diagnosed adult AML, we found that UBTF-TDs occur in about 3% of patients aged 18-60 years, in a mutually exclusive pattern with other known AML subtype-defining alterations. The characteristics of 59 adults with UBTF-TD AML included young age (median 37 years), low bone marrow (BM) blast infiltration (median 25%), and high rates of WT1 mutations (61%), FLT3-ITDs (51%) and trisomy 8 (29%). BM morphology frequently demonstrates dysmyelopoiesis albeit modulated by the co-occurrence of FLT3-ITD. UBTF-TD patients have lower complete remission (CR) rates (57% after 1 course and 76% after 2 courses of intensive chemotherapy [ICT]) than UBTF-wild-type patients. In patients enrolled in the ALFA-0702 study (n = 614 patients including 21 with UBTF-TD AML), the 3-year disease-free survival (DFS) and overall survival of UBTF-TD patients were 42.9% (95%CI: 23.4-78.5%) and 57.1% (95%CI: 39.5-82.8%) and did not significantly differ from those of ELN 2022 intermediate/adverse risk patients. Finally, the study of paired diagnosis and relapsed/refractory AML samples suggests that WT1-mutated clones are frequently selected under ICT. This study supports the recognition of UBTF-TD AML as a new AML entity in adults.
Assuntos
Leucemia Mieloide Aguda , Adulto , Criança , Humanos , Intervalo Livre de Doença , Tirosina Quinase 3 Semelhante a fms/genética , Leucemia Mieloide Aguda/genética , Mutação , Prognóstico , Indução de RemissãoRESUMO
The treatment landscape of acute myeloid leukemia (AML) is evolving, with promising therapies entering clinical translation, yet patient responses remain heterogeneous, and biomarkers for tailoring treatment are lacking. To understand how disease heterogeneity links with therapy response, we determined the leukemia cell hierarchy makeup from bulk transcriptomes of more than 1,000 patients through deconvolution using single-cell reference profiles of leukemia stem, progenitor and mature cell types. Leukemia hierarchy composition was associated with functional, genomic and clinical properties and converged into four overall classes, spanning Primitive, Mature, GMP and Intermediate. Critically, variation in hierarchy composition along the Primitive versus GMP or Primitive versus Mature axes were associated with response to chemotherapy or drug sensitivity profiles of targeted therapies, respectively. A seven-gene biomarker derived from the Primitive versus Mature axis was associated with response to 105 investigational drugs. Cellular hierarchy composition constitutes a novel framework for understanding disease biology and advancing precision medicine in AML.
Assuntos
Leucemia Mieloide Aguda , Biomarcadores , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismoRESUMO
Acute myeloid leukemia (AML) is a hematological malignancy with a high risk of relapse. This issue is associated with the development of mechanisms leading to drug resistance that are not yet fully understood. In this context, we previously showed the clinical significance of the ATP binding cassette subfamily B-member 1 (ABCB1) in AML patients, namely its association with stemness markers and an overall worth prognosis. Calcium signaling dysregulations affect numerous cellular functions and are associated with the development of the hallmarks of cancer. However, in AML, calcium-dependent signaling pathways remain poorly investigated. With this study, we show the involvement of the ORAI1 calcium channel in store-operated calcium entry (SOCE), the main calcium entry pathway in non-excitable cells, in two representative human AML cell lines (KG1 and U937) and in primary cells isolated from patients. Moreover, our data suggest that in these models, SOCE varies according to the differentiation status, ABCB1 activity level and leukemic stem cell (LSC) proportion. Finally, we present evidence that ORAI1 expression and SOCE amplitude are modulated during the establishment of an apoptosis resistance phenotype elicited by the chemotherapeutic drug Ara-C. Our results therefore suggest ORAI1/SOCE as potential markers of AML progression and drug resistance apparition.
Assuntos
Citarabina , Leucemia Mieloide Aguda , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Citarabina/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismoAssuntos
Leucemia Mieloide Aguda , Leucemia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Azacitidina/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Humanos , Leucemia/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Fenótipo , SulfonamidasRESUMO
The independent prognostic impact of specific dysplastic features in acute myeloid leukemia (AML) remains controversial and may vary between genomic subtypes. We apply a machine learning framework to dissect the relative contribution of centrally reviewed dysplastic features and oncogenetics in 190 patients with de novo AML treated in ALFA clinical trials. One hundred and thirty-five (71%) patients achieved complete response after the first induction course (CR). Dysgranulopoiesis, dyserythropoiesis and dysmegakaryopoiesis were assessable in 84%, 83% and 63% patients, respectively. Multi-lineage dysplasia was present in 27% of assessable patients. Micromegakaryocytes (q = 0.01), hypolobulated megakaryocytes (q = 0.08) and hyposegmented granulocytes (q = 0.08) were associated with higher ELN-2017 risk. Using a supervised learning algorithm, the relative importance of morphological variables (34%) for the prediction of CR was higher than demographic (5%), clinical (2%), cytogenetic (25%), molecular (29%), and treatment (5%) variables. Though dysplasias had limited predictive impact on survival, a multivariate logistic regression identified the presence of hypolobulated megakaryocytes (p = 0.014) and micromegakaryocytes (p = 0.035) as predicting lower CR rates, independently of monosomy 7 (p = 0.013), TP53 (p = 0.004), and NPM1 mutations (p = 0.025). Assessment of these specific dysmegakarypoiesis traits, for which we identify a transcriptomic signature, may thus guide treatment allocation in AML.
Assuntos
Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Adulto , Idoso , Análise Citogenética , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Aprendizado de Máquina , Masculino , Megacariócitos/patologia , Pessoa de Meia-Idade , Prognóstico , Resultado do TratamentoRESUMO
Introduction: RUNX1 is an essential transcription factor for normal and malignant hematopoiesis. RUNX1 forms a heterodimeric complex with CBFB. Germline mutations and somatic alterations (i.e. translocations, mutations and abnormal expression) are frequently associated with acute myeloid leukemia (AML) with RUNX1 mutations conferring unfavorable prognosis. Therefore, RUNX1 constitutes a potential innovative and interesting therapeutic target. In this review, we discuss recent therapeutic advances of RUNX1 targeting in AML.Areas covered: Firstly, we cover the clinical basis for RUNX1 targeting. We have subdivided recent therapeutic approaches either by common biochemical pathways or by similar pharmacological targets. Genome editing of RUNX1 induces anti-leukemic effects; however, off-target events prohibit clinical use. Several molecules inhibit the interaction between RUNX1/CBFB and control AML development and progression. BET protein antagonists target RUNX1 (i.e. specific BET inhibitors, BRD4 shRNRA, proteolysis targeting chimeras (PROTAC) or expression-mimickers). All these molecules improve survival in mutant RUNX1 AML preclinical models.Expert opinion: Some of these novel molecules have shown encouraging anti-leukemic potency at the preclinical stage. A better understanding of RUNX1 function in AML development and progression and its key downstream pathways, may result in more precise and more efficient RUNX1 targeting therapies.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Terapia de Alvo Molecular , Animais , Antineoplásicos/farmacologia , Progressão da Doença , Mutação em Linhagem Germinativa , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação , Prognóstico , Taxa de SobrevidaRESUMO
Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, Nuclear LUCAT1 (NLUCAT1), which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.
RESUMO
Oncogenesis and ontogeny of blastic plasmacytoid dendritic cell neoplasm (BPDCN) remain uncertain, between canonical plasmacytoid dendritic cells (pDCs) and AXL+ SIGLEC6+ DCs (AS-DCs). We compared 12 BPDCN to 164 acute leukemia by Affymetrix HG-U133 Plus 2.0 arrays: BPDCN were closer to B-cell acute lymphoblastic leukemia (ALL), with enrichment in pDC, B-cell signatures, vesicular transport, deubiquitination pathways, and AS-DC signatures, but only in some cases. Importantly, 1 T-cell ALL clustered with BPDCN, with compatible morphology, immunophenotype (cCD3+ sCD3- CD123+ cTCL1+ CD304+), and genetics. Many oncogenetic pathways are deregulated in BPDCN compared with normal pDC, such as cell-cycle kinases, and importantly, the transcription factor SOX4, involved in B ontogeny, pDC ontogeny, and cancer cell invasion. High-throughput sequencing (HaloPlex) showed myeloid mutations (TET2, 62%; ASXL1, 46%; ZRSR2, 31%) associated with lymphoid mutations (IKZF1), whereas single-nucleotide polymorphism (SNP) array (Affymetrix SNP array 6.0) revealed frequent losses (mean: 9 per patient) involving key hematological oncogenes (RB1, IKZF1/2/3, ETV6, NR3C1, CDKN2A/B, TP53) and immune response genes (IFNGR, TGFB, CLEC4C, IFNA cluster). Various markers suggest an AS-DC origin, but not in all patients, and some of these abnormalities are related to the leukemogenesis process, such as the 9p deletion, leading to decreased expression of genes encoding type I interferons. In addition, the AS-DC profile is only found in a subgroup of patients. Overall, the cellular ontogenic origin of BPDCN remains to be characterized, and these results highlight the heterogeneity of BPDCN, with a risk of a diagnostic trap.
Assuntos
Transtornos Mieloproliferativos , Transcriptoma , Carcinogênese , Células Dendríticas , Genômica , Humanos , Lectinas Tipo C , Glicoproteínas de Membrana , Receptores Imunológicos , Fatores de Transcrição SOXCRESUMO
RhoH is an unusual member of the Rho family of small GTP-binding proteins in that it lacks GTPase activity. Since the RhoH protein is constantly bound by GTP, it is constitutively active and controlled predominantly by changes in quantitative expression. Abnormal levels of RHOH gene transcripts have been linked to a range of malignancies including acute myeloid leukemia (AML). One of the hallmarks of AML is a block in the normal program of myeloid differentiation. Here we investigate how myeloid differentiation is controlled by the quantitative expression of RHOH. Our analysis demonstrates that increasingly mature myeloid cells express progressively lower levels of RHOH. However, as monocytic myeloid cells terminally differentiate into macrophages, RHOH expression is up-regulated. This up-regulation is not apparent in AML where myeloid differentiation is blocked at stages of low RHOH expression. Nevertheless, when the up-regulation of RHOH is forced, then terminal macrophage differentiation is induced and the Cdc42 and Wnt intracellular signalling pathways are repressed. These results indicate that RHOH induction is a driver of terminal differentiation and might represent a means of effecting AML differentiation therapy. The potential of this therapeutic strategy is supported by forced up-regulation of RHOH reducing the ability of AML cells to produce tumours in vivo.
RESUMO
Neoplasms involving plasmacytoid Dendritic Cells (pDCs) include Blastic pDC Neoplasms (BPDCN) and other pDC proliferations, where pDCs are associated with myeloid malignancies: most frequently Chronic MyeloMonocytic Leukemia (CMML) but also Acute Myeloid Leukemia (AML), hereafter named pDC-AML. We aimed to determine the reactive or neoplastic origin of pDCs in pDC-AML, and their link with the CD34+ blasts, monocytes or conventional DCs (cDCs) associated in the same sample, by phenotypic and molecular analyses (targeted NGS, 70 genes). We compared 15 pDC-AML at diagnosis with 21 BPDCN and 11 normal pDCs from healthy donors. CD45low CD34+ blasts were found in all cases (10-80% of medullar cells), associated with pDCs (4-36%), monocytes in 14 cases (1-10%) and cDCs (2 cases, 4.8-19%). pDCs in pDC-AML harbor a clearly different phenotype from BPDCN: CD4+ CD56- in 100% of cases, most frequently CD303+, CD304+ and CD34+; lower expression of cTCL1 and CD123 with isolated lymphoid markers (CD22/CD7/CD5) in some cases, suggesting a pre-pDC stage. In all cases, pDCs, monocytes and cDC are neoplastic since they harbor the same mutations as CD34+ blasts. RUNX1 is the most commonly mutated gene: detected in all AML with minimal differentiation (M0-AML) but not in the other cases. Despite low number of cases, the systematic association between M0-AML, RUNX1 mutations and an excess of pDC is puzzling. Further evaluation in a larger cohort is required to confirm RUNX1 mutations in pDC-AML with minimal differentiation and to investigate whether it represents a proliferation of blasts with macrophage and DC progenitor potential.
Assuntos
Células Dendríticas , Leucemia Mieloide Aguda , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/genética , Mutação , FenótipoRESUMO
Advances in transcriptomics have improved our understanding of leukemic development and helped to enhance the stratification of patients. The tendency of transcriptomic studies to combine AML samples, regardless of cytogenetic abnormalities, could lead to bias in differential gene expression analysis because of the differential representation of AML subgroups. Hence, we performed a horizontal meta-analysis that integrated transcriptomic data on AML from multiple studies, to enrich the less frequent cytogenetic subgroups and to uncover common genes involved in the development of AML and response to therapy. A total of 28 Affymetrix microarray data sets containing 3940 AML samples were downloaded from the Gene Expression Omnibus database. After stringent quality control, transcriptomic data on 1534 samples from 11 data sets, covering 10 AML cytogenetically defined subgroups, were retained and merged with the data on 198 healthy bone marrow samples. Differentially expressed genes between each cytogenetic subgroup and normal samples were extracted, enabling the unbiased identification of 330 commonly deregulated genes (CODEGs), which showed enriched profiles of myeloid differentiation, leukemic stem cell status, and relapse. Most of these genes were downregulated, in accordance with DNA hypermethylation. CODEGs were then used to create a prognostic score based on the weighted sum of expression of 22 core genes (CODEG22). The score was validated with microarray data of 5 independent cohorts and by quantitative real time-polymerase chain reaction in a cohort of 142 samples. CODEG22-based stratification of patients, globally and into subpopulations of cytologically healthy and elderly individuals, may complement the European LeukemiaNet classification, for a more accurate prediction of AML outcomes.
Assuntos
Leucemia Mieloide Aguda , Idoso , Citogenética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Análise em Microsséries , Recidiva Local de Neoplasia , PrognósticoRESUMO
Gemtuzumab ozogamicin (GO, Mylotarg®) consists of a humanized CD33-targeted antibody-drug conjugated to a calicheamicin derivative. Growing evidence of GO efficacy in acute myeloid leukemia (AML), demonstrated by improved outcomes in CD33-positive AML patients across phase I to III clinical trials, led to the Food and Drug Administration (FDA) approval on 1 September 2017 in CD33-positive AML patients aged 2 years and older. Discrepancies in GO recipients outcome have raised significant efforts to characterize biomarkers predictive of GO response and have refined the subset of patients that may strongly benefit from GO. Among them, CD33 expression levels, favorable cytogenetics (t(8;21), inv(16)/t(16;16), t(15;17)) and molecular alterations, such as NPM1, FLT3-internal tandem duplications and other signaling mutations, represent well-known candidates. Additionally, in depth analyses including minimal residual disease monitoring, stemness expression (LSC17 score), mutations or single nucleotide polymorphisms in GO pathway genes (CD33, ABCB1) and molecular-derived scores, such as the recently set up CD33_PGx6_Score, represent promising markers to enhance GO response prediction and improve patient management.
Assuntos
Biomarcadores Tumorais/metabolismo , Gemtuzumab/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Animais , Ensaios Clínicos como Assunto , Gemtuzumab/química , Ontologia Genética , Humanos , Leucemia Mieloide Aguda/genética , Neoplasia Residual/tratamento farmacológico , NucleofosminaRESUMO
Vitamin D (VD) is a known differentiating agent, but the role of VD receptor (VDR) is still incompletely described in acute myeloid leukemia (AML), whose treatment is based mostly on antimitotic chemotherapy. Here, we present an unexpected role of VDR in normal hematopoiesis and in leukemogenesis. Limited VDR expression is associated with impaired myeloid progenitor differentiation and is a new prognostic factor in AML. In mice, the lack of Vdr results in increased numbers of hematopoietic and leukemia stem cells and quiescent hematopoietic stem cells. In addition, malignant transformation of Vdr-/- cells results in myeloid differentiation block and increases self-renewal. Vdr promoter is methylated in AML as in CD34+ cells, and demethylating agents induce VDR expression. Association of VDR agonists with hypomethylating agents promotes leukemia stem cell exhaustion and decreases tumor burden in AML mouse models. Thus, Vdr functions as a regulator of stem cell homeostasis and leukemic propagation.
Assuntos
Medula Óssea/patologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores de Calcitriol/metabolismo , Animais , Apoptose/efeitos dos fármacos , Azacitidina/farmacologia , Medula Óssea/efeitos dos fármacos , Contagem de Células , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Progressão da Doença , Feminino , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/patologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Oncogenes , Regiões Promotoras Genéticas/genética , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Ensaio Tumoral de Célula-TroncoRESUMO
Acute myeloid leukemia (AML) is a highly heterogeneous disease both in terms of genetic background and response to chemotherapy. Although molecular aberrations are routinely used to stratify AML patients into prognostic subgroups when receiving standard chemotherapy, the predictive value of the genetic background and co-occurring mutations remains to be assessed when using newly approved antileukemic drugs. In the present study, we retrospectively addressed the question of the predictive value of molecular events on the benefit of the addition of gemtuzumab ozogamicin (GO) to standard front-line chemotherapy. Using the more recent European LeukemiaNet (ELN) 2017 risk classification, we confirmed that the benefit of GO was restricted to the favorable (hazard ratio [HR], 0.54, 95% confidence interval [CI], 0.30-0.98) and intermediate (HR, 0.57; 95% CI, 0.33-1.00) risk categories, whereas it did not influence the outcome of patients within the adverse risk subgroup (HR, 0.93; 95% CI, 0.61-1.43). Interestingly, the benefit of GO was significant for patients with activating signaling mutations (HR, 0.43; 95% CI, 0.28-0.65), which correlated with higher CD33 expression levels. These results suggest that molecular aberrations could be critical for future differentially tailored treatments based on integrated genetic profiles that are able to predict the benefit of GO on outcome.
Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Gemtuzumab/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Idoso , Antineoplásicos Imunológicos/efeitos adversos , Gemtuzumab/efeitos adversos , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genéticaRESUMO
ABCB1 is a member of the ATP binding cassette transporter family and high ABCB1 activity is considered as a poor prognostic factor in acute myeloid leukemia (AML) treated with intensive chemotherapy, its direct relation with drug resistance remains unclear. We evaluated ABCB1 activity in relation with clinical parameters and treatment response to standard chemotherapy in 321 patients with de novo AML. We assessed multiple clinical relationships of ABCB1 activity-ex vivo drug resistance, gene expression, and the ABCB1 inhibitor quinine were evaluated. ABCB1 activity was observed in 58% of AML and was linked to low white blood cell count, high expression of CD34, absence of FLT3-ITD, and absence of mutant NPM1. Moreover, ABCB1 activity was associated with worse overall- and event-free survival. However, ABCB1 activity did not directly lead to ex vivo drug resistance to anthracyclines. We found that ABCB1 was highly correlated with gene expressions of BAALC, CD34, CD200, and CD7, indicating that ABCB1 expression maybe a passenger characteristic of high-risk AML. Furthermore, ABCB1 was inversely correlated to HOX cluster genes and CD33. Thus, low ABCB1 AML patients benefited specifically from anti-CD33 treatment by gemtuzumab ozogamicin in addition to standard chemotherapy. We showed prognostic importance of ABCB1 gene expression, protein expression, and activity. Furthermore, ABCB1 was not directly linked to drug resistance, ABCB1 inhibition did not improve outcome of high ABCB1 AML patients and thus high ABCB1 may represent a passenger characteristic of high-risk AML.
RESUMO
Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, NLUCAT1, which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.
Assuntos
Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Estresse Oxidativo/fisiologia , RNA Longo não Codificante/fisiologia , Adenocarcinoma de Pulmão/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/metabolismo , FenótipoRESUMO
Despite constant progress in prognostic risk stratification, children with acute myeloid leukemia (AML) still relapse. Treatment failure and subsequent relapse have been attributed to acute myeloid leukemia-initiating cells (LSC), which harbor stem cell properties and are inherently chemoresistant. Although pediatric and adult AML represent two genetically very distinct diseases, we reasoned that common LSC gene expression programs are shared and consequently, the highly prognostic LSC17 signature score recently developed in adults may also be of clinical interest in childhood AML. Here, we demonstrated prognostic relevance of the LSC17 score in pediatric non-core-binding factor AML using Nanostring technology (ELAM02) and RNA-seq data from the NCI (TARGET-AML). AML were stratified by LSC17 quartile groups (lowest 25%, intermediate 50% and highest 25%) and children with low LSC17 score had significantly better event-free survival (EFS: HR = 3.35 (95%CI = 1.64-6.82), P < 0.001) and overall survival (OS: HR = 3.51 (95%CI = 1.38-8.92), P = 0.008) compared with patients with high LSC17 scores. More importantly, the high LSC17 score was an independent negative EFS and OS prognosticator determined by multivariate Cox model analysis (EFS: HR = 3.42 (95% CI = 1.63-7.16), P = 0.001; OS HR = 3.02 (95%CI = 1.16-7.85), P = 0.026). In conclusion, we have demonstrated the broad applicability of the LSC17 score in the clinical management of AML by extending its prognostic relevance to pediatric AML.