Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 13(2): 621-638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632230

RESUMO

Rationale: Metastasis is a complex process with a molecular underpinning that remains unclear. We hypothesize that cargo proteins conducted by extracellular vesicles (EVs) released from tumors may confer growth and metastasis potential on recipient cells. Here, we report that a cytokine-like secreted protein, FAM3C, contributes to late-stage lung tumor progression. Methods: EV protein profiling was conducted with an unbiased proteomic mass spectrometry analysis on non-small cell lung cancer (NSCLC) and normal lung fibroblast cell lines. Expression of FAM3C was confirmed in a panel of NSCLC cell lines, and correlated to the invasive and metastatic potentials. Functional phenotype of endogenous FAM3C and tumor-derived EVs (TDEs) were further investigated using various biological approaches in RNA and protein levels. Metastasis potential of TDEs secreted by FAM3C-overexpressing carcinoma cells was validated in mouse models. Results: Transcriptomic meta-analysis of pan-cancer datasets confirmed the overexpression of FAM3C - a gene encoding for interleukin-like EMT inducer (ILEI) - in NSCLC tumors, with strong association with poor patient prognosis and cancer metastasis. Aberrant expression of FAM3C in lung carcinoma cells enhances cellular transformation and promotes distant lung tumor colonization. In addition, higher FAM3C concentrations were detected in EVs extracted from plasma samples of NSCLC patients compared to those of healthy subjects. More importantly, we defined a hitherto-unknown mode of microenvironmental crosstalk involving FAM3C in EVs, whereby the delivery and uptake of FAM3C via TDEs enhances oncogenic signaling - in recipient cells that phenocopies the cell-endogenous overexpression of FAM3C. The oncogenicity transduced by FAM3C is executed via a novel interaction with the Ras-related protein RalA, triggering the downstream activation of the Src/Stat3 signaling cascade. Conclusions: Our study describes a novel mechanism for FAM3C-driven carcinogenesis and shed light on EV FAM3C as a driver for metastatic lung tumors that could be exploited for cancer therapeutics.


Assuntos
Carcinogênese , Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/secundário , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteômica
2.
Data Brief ; 17: 1112-1135, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29876469

RESUMO

This article contains further data and information from our published manuscript [1]. We aim to identify significant transcriptome alterations of vascular smooth muscle cells (VSMCs) in the aortic wall of myocardial infarction (MI) patients. Microarray gene analysis was applied to evaluate VSMCs of MI and non-MI patients. Prediction Analysis of Microarray (PAM) identified genes that significantly discriminated the two groups of samples. Incorporation of gene ontology (GO) identified a VSMCs-associated classifier that discriminated between the two groups of samples. Mass spectrometry-based iTRAQ analysis revealed proteins significantly differentiating these two groups of samples. Ingenuity Pathway Analysis (IPA) revealed top pathways associated with hypoxia signaling in cardiovascular system. Enrichment analysis of these proteins suggested an activated pathway, and an integrated transcriptome-proteome pathway analysis revealed that it is the most implicated pathway. The intersection of the top candidate molecules from the transcriptome and proteome highlighted overexpression.

3.
Atherosclerosis ; 271: 237-244, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29395098

RESUMO

BACKGROUND AND AIMS: We aim to identify significant transcriptome alterations of vascular smooth muscle cells (VSMCs) in the aortic wall of myocardial infarction (MI) patients. Providing a robust transcriptomic signature, we aim to highlight the most likely aberrant pathway(s) in MI VSMCs. METHODS AND RESULTS: Laser-captured microdissection (LCM) was used to obtain VSMCs from aortic wall tissues harvested during coronary artery bypass surgery. Microarray gene analysis was applied to analyse VSMCs from 17 MI and 19 non-MI patients. Prediction Analysis of Microarray (PAM) identified 370 genes that significantly discriminated MI and non-MI samples and were enriched in genes responsible for muscle development, differentiation and phenotype regulation. Incorporation of gene ontology (GO) led to the identification of a 21-gene VSMCs-associated classifier that discriminated between MI and non-MI patients with 92% accuracy. The mass spectrometry-based iTRAQ analysis of the MI and non-MI samples revealed 94 proteins significantly differentiating these tissues. Ingenuity Pathway Analysis (IPA) of 370 genes revealed top pathways associated with hypoxia signaling in the cardiovascular system. Enrichment analysis of these proteins suggested an activation of the superoxide radical degradation pathway. An integrated transcriptome-proteome pathway analysis revealed that superoxide radical degradation pathway remained the most implicated pathway. The intersection of the top candidate molecules from the transcriptome and proteome highlighted superoxide dismutase (SOD1) overexpression. CONCLUSIONS: We provided a novel 21-gene VSMCs-associated MI classifier in reference to significant VSMCs transcriptome alterations that, in combination with proteomics data, suggests the activation of superoxide radical degradation pathway in VSMCs of MI patients.


Assuntos
Músculo Liso Vascular/química , Infarto do Miocárdio/genética , Miócitos de Músculo Liso/química , Transdução de Sinais/genética , Transcriptoma , Aorta/química , Estudos de Casos e Controles , Cromatografia Líquida , Perfilação da Expressão Gênica/métodos , Humanos , Infarto do Miocárdio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Proteômica/métodos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Superóxidos/metabolismo , Espectrometria de Massas em Tandem
4.
Cancer Lett ; 417: 152-160, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29306016

RESUMO

Accumulating evidence has implicated the aberrant regulation of histone deacetylases (HDACs) as a nexus for multiple cancer hallmarks and in mediating tumor adaptation and resistance to genotoxic chemotherapy, suggesting a rational pairing of HDAC inhibitors with DNA damaging chemotherapeutic agents in the treatment of human malignancies. Here we report that panobinostat (LBH589), a potent pan-HDAC inhibitor, effectively curbed the proliferation of non-small cell lung cancer (NSCLC) cell lines A549, Calu-1, H226, H460, H838 and SKMES-1 at IC50 concentrations between 4 and 31 nmol/L via pleiotropic mechanisms, including crosstalk with EGFR signal transduction cascades. Combination therapy with carboplatin elicited rapid tumor cell kill and effectively restrained anchorage-independent clonogenic survival to a considerably greater extent over either monotherapy. The administration of carboplatin and panobinostat at clinically relevant doses to NOD-SCID xenograft mice drastically stalled disease progression by 92% as compared with negative control (P = .0026), which was greater than the 28% and 54% achieved with either carboplatin (P = .220) or panobinostat (P = .017) alone. These data demonstrate that panobinostat has strong anti-NSCLC activity and chemosensitizes tumors to carboplatin, thus justifying further evaluation of this combination approach in clinical trials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Células A549 , Animais , Carboplatina/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Indóis/administração & dosagem , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Panobinostat , Transdução de Sinais/efeitos dos fármacos
5.
J Proteome Res ; 17(1): 499-515, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29068691

RESUMO

The lack of precise biomarkers that identify patients at risk for myocardial injury and stable angina delays administration of optimal therapy. Hence, the search for noninvasive biomarkers that could accurately stratify patients with impending heart attack, from patients with stable coronary artery disease (CAD), is urgently needed in the clinic. Herein, we performed comparative quantitative proteomics on whole plasma sampled from patients with stable angina (NMI), acute myocardial infarction (MI), and healthy control subjects (Ctrl). We detected a total of 371 proteins with high confidence (FDR < 1%, p < 0.05) including 53 preliminary biomarkers that displayed ≥2-fold modulated expression in patients with CAD (27 associated with atherosclerotic stable angina, 26 with myocardial injury). In the verification phase, we used label-free LC-MRM-MS-based targeted method to verify the preliminary biomarkers in pooled plasma, excluded peptides that were poorly distinguished from background, and performed further validation of the remaining candidates in 49 individual plasma samples. Using this approach, we identified a final panel of eight novel candidate biomarkers that were significantly modulated in CAD (p < 0.05) including proteins associated with atherosclerotic stable angina that were implicated in endothelial dysfunction (F10 and MST1), proteins associated with myocardial injury reportedly involved in plaque destabilization (SERPINA3, CPN2, LUM), and in tissue protection/repair mechanisms (ORM2, ACTG1, NAGLU). Taken together, our data showed that candidate biomarkers with potential diagnostic values can be successfully detected in nondepleted human plasma using an iTRAQ/MRM-based discovery-validation approach and demonstrated the plausible clinical utility of the proposed panel in discriminating atherosclerotic stable angina from myocardial injury in the studied cohort.


Assuntos
Angina Estável/diagnóstico , Infarto do Miocárdio/diagnóstico , Proteômica/métodos , Angina Estável/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Cromatografia Líquida/métodos , Doença da Artéria Coronariana/sangue , Diagnóstico Diferencial , Humanos , Masculino , Infarto do Miocárdio/sangue , Espectrometria de Massas em Tandem
6.
Mol Cell Proteomics ; 15(8): 2628-40, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27234505

RESUMO

Myocardial infarction (MI) triggers a potent inflammatory response via the release of circulatory mediators, including extracellular vesicles (EVs) by damaged cardiac cells, necessary for myocardial healing. Timely repression of inflammatory response are critical to prevent and minimize cardiac tissue injuries, nonetheless, progression in this aspect remains challenging. The ability of EVs to trigger a functional response upon delivery of carried bioactive cargos, have made them clinically attractive diagnostic biomarkers and vectors for therapeutic interventions. Using label-free quantitative proteomics approach, we compared the protein cargo of plasma EVs between patients with MI and from patients with stable angina (NMI). We report, for the first time, the proteomics profiling on 252 EV proteins that were modulated with >1.2-fold after MI. We identified six up-regulated biomarkers with potential for clinical applications; these reflected post-infarct pathways of complement activation (Complement C1q subcomponent subunit A (C1QA), 3.23-fold change, p = 0.012; Complement C5 (C5), 1.27-fold change, p = 0.087), lipoprotein metabolism (Apoliporotein D (APOD), 1.86-fold change, p = 0.033; Apolipoprotein C-III (APOCC3), 2.63-fold change, p = 0.029) and platelet activation (Platelet glycoprotein Ib alpha chain (GP1BA), 9.18-fold change, p < 0.0001; Platelet basic protein (PPBP), 4.72-fold change, p = 0.027). The data have been deposited to the ProteomeXchange with identifier PXD002950. This novel biomarker panel was validated in 43 patients using antibody-based assays (C1QA (p = 0.005); C5 (p = 0.0047), APOD (p = 0.0267); APOC3 (p = 0.0064); GP1BA (p = 0.0031); PPBP (p = 0.0465)). We further present that EV-derived fibrinogen components were paradoxically down-regulated in MI, suggesting that a compensatory mechanism may suppress post-infarct coagulation pathways, indicating potential for therapeutic targeting of this mechanism in MI. Taken together, these data demonstrated that plasma EVs contain novel diagnostic biomarkers and therapeutic targets that can be further developed for clinical use to benefit patients with coronary artery diseases (CADs).


Assuntos
Angina Estável/metabolismo , Biomarcadores/sangue , Vesículas Extracelulares/metabolismo , Infarto do Miocárdio/metabolismo , Proteômica/métodos , Idoso , Cromatografia Líquida , Feminino , Fibrinogênio/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem , Regulação para Cima
7.
Mol Cell Proteomics ; 12(2): 485-98, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23204318

RESUMO

Tumor hypoxia induces cancer cell angiogenesis, invasiveness, treatment resistance, and contributes to poor clinical outcome. However, the molecular mechanism by which tumor hypoxia exerts a coordinated effect on different molecular pathways to enhance tumor growth and survival and lead to poor clinical outcome is not fully understood. In this study, we attempt to elucidate the global protein expression and functional changes in A431 epithelial carcinoma cells induced by hypoxia and reoxygenation using iTRAQ quantitative proteomics and biochemical functional assays. Quantitative proteomics results showed that 4316 proteins were quantified with FDR<1%, in which over 1200 proteins were modulated >1.2 fold, and DNA repair, glycolysis, integrin, glycoprotein turnover, and STAT1 pathways were perturbed by hypoxia and reoxygenation-induced oxidative stress. For the first time, hypoxia was shown to up-regulate the nonhomologous end-joining pathway, which plays a central role in DNA repair of irradiated cells, thereby potentially contributing to the radioresistance of hypoxic A431 cells. The up-regulation of Ku70/Ku80 dimer, a key molecular complex in the nonhomologous end-joining pathway, was confirmed by Western blot and liquid chromatography/tandem mass spectrometry-MRM methods. Functional studies confirmed that up-regulation of glycolysis, integrin, glycoprotein synthesis, and down-regulation of STAT1 pathways during hypoxia enhanced metastastic activity of A431 cells. Migration of A431 cells was dramatically repressed by glycolysis inhibitor (2-Deoxy-d-glucose), glycoprotein synthesis inhibitor (1-Deoxynojirimycin Hydrochloride), and STAT1α overexpression that enhanced the integrin-mediated cell adhesion. These results revealed that hypoxia induced several biological processes involved in tumor migration and radioresistance and provided potential new targets for tumor therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Tolerância a Radiação , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Adesão Celular , Hipóxia Celular , Linhagem Celular Tumoral/efeitos da radiação , Movimento Celular , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Raios gama , Humanos , Integrinas/genética , Integrinas/metabolismo , Autoantígeno Ku , Neoplasias/radioterapia , Estresse Oxidativo , Multimerização Proteica , Inibidores da Síntese de Proteínas/farmacologia , Proteômica , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
8.
J Proteomics ; 75(18): 5590-603, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-22992538

RESUMO

Proteomics analysis of lignocellulolytic proteins by lignocellulosic biomass degrading microbes and compatible microbial consortium is a promising approach that offers a new means to enzyme discovery. The abundance of proteins in complex secretome by microbial communities would highlight key lignocellulolytic proteins for lignocellulosic biorefinery. In this study, lignocellulolytic enzymes of potent lignin degrading basidiomycota and effective cellulolytic ascomycota fungal strains, and their co-cultures were analyzed using high throughput isobaric tag for relative and absolute quantitation (iTRAQ) technique using liquid chromatography tandem mass spectrometry. Protein abundances in the iTRAQ-multiplexed samples were determined by integrating relative quantitation and exponentially modified protein abundance index (emPAI). The functional classification of the secretory proteins by individual culture and co-culture demonstrated 36.77% cellulolytic proteins, 13.06% hemicellulases, 14.09% ligninolytic proteins, 19.59% proteolytic enzymes. 7.22% hypothetical proteins and 6.87% cell morphogenesis proteins. The abundance of the proteins by individual cultures and co-cultured fungal consortium revealed that co-culturing of Phanerochaete chrysosporium with Trichoderma reesei QM6a and Trichoderma reesei Rut C30 induced the production of cellulolytic proteins and stimulated expression of hemicellulolytic enzymes. The hierarchical clustering of proteins in secretome of fungal strains and their co-cultures elucidated differential expressions of lignocellulolytic proteins by the microbial consortium.


Assuntos
Biomassa , Celulose/metabolismo , Poeira , Lignina/metabolismo , Consórcios Microbianos , Madeira/microbiologia , Celulase/metabolismo , Cromatografia Líquida , Técnicas de Cocultura , Proteínas Fúngicas/metabolismo , Consórcios Microbianos/fisiologia , Peptídeo Hidrolases/metabolismo , Phanerochaete/enzimologia , Proteômica/métodos , Espectrometria de Massas em Tandem , Trichoderma/enzimologia
9.
J Proteomics ; 75(12): 3694-706, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22575269

RESUMO

Solid state fermentation of lignocellulosic biomass by filamentous microorganisms to induced enzyme production has been recognized as an attractive and cost effective technology. The secretion profile of lignocellulolytic enzymes by thermostable filamentous Thermobifida fusca (T. fusca) in solid state fermentation of different lignocellulosic biomasses, such as corn stover, hay; saw dust; sugarcane bagasse; wood chips; and un-dried green plant were explored using label-free exponentially modified protein abundance index (emPAI) based quantitative proteomics. Comparative analyses of T. fusca secretion profiles between cellulose and the various lignocellulosic biomasses showed induced expression of cellulolytic proteins by cellulose, and expression of hemicellulose, pectin and lignin degrading enzymes were induced by lignocellulosic biomasses. The solid state fermentation by T. fusca on lignocellulosic biomasses also revealed increased expressions of various transport proteins and hypothetical proteins. The Bray-Curtis similarity indices, clustering, and multidimensional scaling plot explicated differential protein expressions by T. fusca on different lignocellulosic biomasses, indicating that protein secretion by T. fusca is reliant on substrate complexity.


Assuntos
Actinomycetales/metabolismo , Proteínas de Bactérias/metabolismo , Lignina/metabolismo , Plantas/microbiologia , Proteoma/metabolismo , Biomassa , Fermentação , Perfilação da Expressão Gênica/métodos
10.
J Proteome Res ; 11(3): 1804-11, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22239700

RESUMO

Deamidation of asparaginyl residues in proteins produces a mixture of asparaginyl, n-aspartyl, and isoaspartyl residues, which affects the proteins' structure, function, and stability. Thus, it is important to identify and quantify the products to evaluate the effects in biological systems. It is still a challenging task to distinguish between the n-Asp and isoAsp deamidation products in a proteome-wide analysis because of their similar physicochemical properties. The quantification of the isomeric deamidated peptides is also rather difficult because of their coelution/poor separation in reverse-phase liquid chromatography (RPLC). We here propose a RP-ERLIC-MS/MS approach for separating and quantifying on a proteome-wide scale the three products related to deamidation of the same peptide. The key to the method is the use of RPLC in the first dimensional separation and ERLIC (electrostatic repulsion-hydrophilic interaction chromatography) in the second, with direct online coupling to tandem MS. The coelution of the three deamidation-related peptides in RPLC is then an asset, as they are collected in the same fraction. They are then separated and identified in the second dimension with ERLIC, which separates peptides on the basis of both pI and GRAVY values. The coelution of the three products in RPLC and their efficient separation in ERLIC were validated using synthetic peptides, and the performance of ERLIC-MS/MS was tested using peptide mixtures from two proteins. Applying this sequence to rat liver tissue, we identified 302 unique N-deamidated peptides, of which 20 were identified via all three deamidation-related products and 70 of which were identified via two of them.


Assuntos
Fígado/metabolismo , Fragmentos de Peptídeos/isolamento & purificação , Amidas/química , Sequência de Aminoácidos , Animais , Asparagina/química , Cromatografia por Troca Iônica/métodos , Cromatografia por Troca Iônica/normas , Cromatografia de Fase Reversa/métodos , Isomerismo , Masculino , Dados de Sequência Molecular , Ovalbumina/química , Ovalbumina/isolamento & purificação , Fragmentos de Peptídeos/química , Proteólise , Proteoma/química , Proteoma/isolamento & purificação , Proteoma/metabolismo , Ratos , Ratos Sprague-Dawley , Padrões de Referência , Soroalbumina Bovina/química , Soroalbumina Bovina/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA