Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Meas Sci Au ; 4(5): 515-527, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39430959

RESUMO

The scanning gas diffusion electrode (S-GDE) half-cell is introduced as a new tool to improve the evaluation of electrodes used in electrochemical energy conversion technologies. It allows both fast screening and fundamental studies of real catalyst layers by applying coupled mass spectrometry techniques such as inductively coupled plasma mass spectrometry and online gas mass spectrometry. Hence, the proposed setup overcomes the limitations of aqueous model systems and full cell-level studies, bridging the gap between the two approaches. In this proof-of-concept work, standard fuel cell electrodes are investigated at elevated oxygen reduction reaction current densities, while dissolved Pt x+ ions in the electrolyte and gaseous CO2 in the outlet gas stream are detected to track platinum dissolution and carbon corrosion, respectively. Relevant current densities of up to 0.75 A cm-2 are demonstrated. The electrochemically active surface area, oxygen reduction reaction activity, and Pt dissolution rates are quantified and benchmarked to the values obtained in the conventional stationary GDE half-cell. Moreover, it is found that Pt dissolution is suppressed when O2 is purged into the catalyst layer. Overall, this work demonstrates the feasibility of fast fuel cell electrode screening obtaining, complementary to electrochemical, mass spectrometry data necessary in fundamental studies on structure/performance relationships under actual reaction conditions. While Pt/C, in relevance to its fuel cell application, is used in this study, the proposed setup can be applied in water electrolysis, CO2 conversion, metal-air batteries, and other neighbor technologies.

2.
Energy Environ Sci ; 17(17): 6323-6337, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39205876

RESUMO

Atomic Fe in N-doped C (Fe-N-C) catalysts provide the most promising non-precious metal O2 reduction activity at the cathodes of proton exchange membrane fuel cells. However, one of the biggest remaining challenges to address towards their implementation in fuel cells is their limited durability. Fe demetallation has been suggested as the primary initial degradation mechanism. However, the fate of Fe under different operating conditions varies. Here, we monitor operando Fe dissolution of a highly porous and >50% FeN x electrochemical utilization Fe-N-C catalyst in 0.1 M HClO4, under O2 and Ar at different temperatures, in both flow cell and gas diffusion electrode (GDE) half-cell coupled to inductively coupled plasma mass spectrometry (ICP-MS). By combining these results with pre- and post-mortem analyses, we demonstrate that in the absence of oxygen, Fe cations diffuse away within the liquid phase. Conversely, at -15 mA cm-2 geo and more negative O2 reduction currents, the Fe cations reprecipitate as Fe-oxides. We support our conclusions with a microkinetic model, revealing that the local pH in the catalyst layer predominantly accounts for the observed trend. Even at a moderate O2 reduction current density of -15 mA cm-2 geo at 25 °C, a significant H+ consumption and therefore pH increase (pH = 8-9) within the bulk Fe-N-C layer facilitate precipitation of Fe cations. This work provides a unified view on the Fe dissolution degradation mechanism for a model Fe-N-C in both high-throughput flow cell and practical operating GDE conditions, underscoring the crucial role of local pH in regulating the stability of the active sites.

3.
Chem Commun (Camb) ; 60(71): 9554-9557, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39140135

RESUMO

Automated platforms assessing the stability of electrocatalysts are key to accelerate the deployment of clean energy technologies. Here, we present a robust system that allows the study of corrosion behavior in conjunction with the electrochemical protocol and electrolyte composition over many individual electrodes. Oxygen reduction reaction on Pt is used as a proof-of-concept platform, where the influence of the potential window and phosphoric acid (PA) addition on Pt dissolution is probed. A total of 72 hours of automated operation was realized with actions including liquid management, cell cleaning, aliquoting, PA injection, and bubble detection and removal, demonstrating further advancements in automated stability testing for electrocatalysts.

4.
Adv Sci (Weinh) ; 11(30): e2402991, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874424

RESUMO

The widespread application of green hydrogen production technologies requires cost reduction of crucial elements. To achieve this, a viable pathway to reduce the iridium loading in proton exchange membrane water electrolysis (PEMWE) is explored. Herein, a scalable synthesis method based on a photodeposition process for a TiO2@IrOx core-shell catalyst with a reduced iridium content as low as 40 wt.% is presented. Using this synthesis method, titania support particles homogeneously coated with a thin iridium oxide shell of only 2.1 ± 0.4 nm are obtained. The catalyst exhibits not only high ex situ activity, but also decent stability compared to commercially available catalysts. Furthermore, the unique core-shell structure provides a threefold increased electrical powder conductivity compared to structures without the shell. In addition, the low iridium content facilitates the fabrication of sufficiently thick catalyst layers at decreased iridium loadings mitigating the impact of crack formation in the catalyst layer during PEMWE operation. It is demonstrated that the novel TiO2@IrOx core-shell catalyst clearly outperforms the commercial reference in single-cell tests with an iridium loading below 0.3 mgIr cm-2 exhibiting a superior iridium-specific power density of 17.9 kW gIr -1 compared to 10.4 kW gIr -1 for the commercial reference.

5.
ACS Mater Au ; 4(3): 286-299, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38737117

RESUMO

Fundamental research campaigns in electrocatalysis often involve the use of model systems, such as single crystals or magnetron-sputtered thin films (single metals or metal alloys). The downsides of these approaches are that oftentimes only a limited number of compositions are picked and tested (guided by chemical intuition) and that the validity of trends is not verified under operating conditions typically present in real devices. These together can lead to deficient conclusions, hampering the direct application of newly discovered systems in real devices. In this contribution, the stability of magnetron-sputtered bimetallic PtxRuy thin film electrocatalysts (0 at. % to 100 at. % Ru content) along with three commercially available carbon-supported counterparts (50-67 at. % Ru content) was mapped under electrocatalytic conditions in acidic electrolytes using online ICP-MS. We found several differences between the two systems in the amount of metals dissolved along with the development of the morphology and composition. While the Pt-rich PtxRuy compositions remained unchanged, 30-50 nm diameter surface pits were detected in the case of the Ru-rich sputtered thin films. Contrastingly, the surface of the carbon-supported NPs enriched in Pt accompanied by the leaching of a significant amount of Ru from the alloy structure was observed. Change in morphology was accompanied by a mass loss reaching around 1-2 wt % in the case of the sputtered samples and almost 10 wt % for the NPs. Since PtxRuy has prime importance in driving alcohol oxidation reactions, the stability of all investigated alloys was screened in the presence of isopropanol. While Pt dissolution was marginally affected by the presence of isopropanol, several times higher Ru dissolution was detected, especially in the case of the Ru-rich compositions. Our results underline that trends in terms of electrocatalytic activity and stability cannot always be transferred from model samples to systems that are closer to the ones applied in real devices.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38676629

RESUMO

Gas crossover is critical in proton exchange membrane (PEM)-based electrochemical systems. Recently, single-layer graphene (SLG) has gained great research interest due to its outstanding properties as a barrier layer for small molecules like hydrogen. However, the applicability of SLG as a gas-blocking interlayer in PEMs has yet to be fully understood. In this work, two different approaches for transferring SLG from a copper or a polymeric substrate onto PEMs are compared regarding their application in low-temperature PEM fuel cells. The SLG is sandwiched between two Nafion XL membranes to form a stable composite membrane. The successful transfer is confirmed by Raman spectroscopy and in ex situ hydrogen permeation experiments in the dry state, where a reduction of 50% upon SLG incorporation is achieved. The SLG composite membranes are characterized by their performance and hydrogen-blocking ability in a fuel cell setup at typical operating conditions of 80 °C and with fully humidified gases. The performance of the fuel cell incorporating an SLG composite membrane is equal to that of the reference cell when avoiding the direct etching process from a copper substrate, as remnants from copper etching deteriorate the performance of the fuel cell. For both transfer processes, the hydrogen crossover reduction of SLG composite membranes is only 15-19% (1.5 barabs) in the operating fuel cell. Further, hydrogen pumping experiments suggest that the barrier function of SLG impairs the water transport through the membrane, which may affect water management in electrochemical applications. In summary, this work shows the successful transfer of SLG into a PEM and confirms the effective hydrogen-blocking capability of the SLG interlayer. However, the hydrogen-blocking ability is significantly reduced when running the cell at the typical humidified operating conditions of PEM fuel cells, which follows from a combination of reversible interlayer alteration upon humidification and irreversible defect formation upon PEM fuel cell operation.

7.
Nat Commun ; 15(1): 3601, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684654

RESUMO

Molybdenum disulfide (MoS2) is widely regarded as a competitive hydrogen evolution reaction (HER) catalyst to replace platinum in proton exchange membrane water electrolysers (PEMWEs). Despite the extensive knowledge of its HER activity, stability insights under HER operation are scarce. This is paramount to ensure long-term operation of Pt-free PEMWEs, and gain full understanding on the electrocatalytically-induced processes responsible for HER active site generation. The latter are highly dependent on the MoS2 allotropic phase, and still under debate. We rigorously assess these by simultaneously monitoring Mo and S dissolution products using a dedicated scanning flow cell coupled with downstream analytics (ICP-MS), besides an electrochemical mass spectrometry setup for volatile species analysis. We observe that MoS2 stability is allotrope-dependent: lamellar-like MoS2 is highly unstable under open circuit conditions, whereas cluster-like amorphous MoS3-x instability is induced by a severe S loss during the HER and undercoordinated Mo site generation. Guidelines to operate non-noble PEMWEs are therefore provided based on the stability number metrics, and an HER mechanism which accounts for Mo and S dissolution pathways is proposed.

8.
J Phys Chem Lett ; 15(9): 2529-2536, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412511

RESUMO

Electrochemically active liquid organic hydrogen carriers (EC-LOHCs) can be used directly in fuel cells; so far, however, they have rather low hydrogen storage capacities. In this work, we study the electrooxidation of a potential EC-LOHC with increased energy density, 1-cyclohexylethanol, which consists of two storage functionalities (a secondary alcohol and a cyclohexyl group). We investigated the product spectrum on low-index Pt single-crystal surfaces in an acidic environment by combining cyclic voltammetry, chronoamperometry, and in situ infrared spectroscopy, supported by density functional theory. We show that the electrooxidation of 1-cyclohexylethanol is a highly structure-sensitive reaction with activities Pt(111) ≫ Pt(100) > Pt(110). Most importantly, we demonstrate that 1-cyclohexylethanol can be directly converted to acetophenone, which desorbs from the electrode surface. However, decomposition products are formed, which lead to poisoning. If the latter side reactions could be suppressed, the electrooxidation of 1-cyclohexylethanol would enable the development of EC-LOHCs with greatly increased hydrogen storage capacities.

9.
Angew Chem Int Ed Engl ; 63(5): e202306503, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37466922

RESUMO

Electrochemical energy conversion devices are considered key in reducing CO2 emissions and significant efforts are being applied to accelerate device development. Unlike other technologies, low temperature electrolyzers have the ability to directly convert CO2 into a range of value-added chemicals. To make them commercially viable, however, device efficiency and durability must be increased. Although their design is similar to more mature water electrolyzers and fuel cells, new cell concepts and components are needed. Due to the complexity of the system, singular component optimization is common. As a result, the component interplay is often overlooked. The influence of Fe-species clearly shows that the cell must be considered holistically during optimization, to avoid future issues due to component interference or cross-contamination. Fe-impurities are ubiquitous, and their influence on single components is well-researched. The activity of non-noble anodes has been increased through the deliberate addition of iron. At the same time, however, Fe-species accelerate cathode and membrane degradation. Here, we interpret literature on single components to gain an understanding of how Fe-species influence low temperature CO2 electrolyzers holistically. The role of Fe-species serves to highlight the need for considerations regarding component interplay in general.

10.
ACS Appl Energy Mater ; 6(22): 11497-11509, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38037630

RESUMO

Ag-based electrocatalysts are promising candidates to catalyze the sluggish oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFC) and oxygen evolution reaction (OER) in unitized regenerative fuel cells. However, to be competitive with existing technologies, the AEMFC with Ag electrocatalyst must demonstrate superior performance and long-term durability. The latter implies that the catalyst must be stable, withstanding harsh oxidizing conditions. Moreover, since Ag is typically supported by carbon, the strict stability requirements extend to the whole Ag/C catalyst. In this work, Ag supported on Vulcan carbon (Ag/VC) and mesoporous carbon (Ag/MC) materials is synthesized, and their electrochemical stability is studied using a family of complementary techniques. We first employ an online scanning flow cell combined with inductively coupled plasma mass spectrometry (SFC-ICP-MS) to estimate the kinetic dissolution stability window of Ag. Strong correlations between voltammetric features and the dissolution processes are discovered. Very high silver dissolution during the OER renders this material impractical for regenerative fuel cell applications. To address Ag stability during AEMFC load cycles, accelerated stress tests (ASTs) in O2-saturated solutions are carried out in rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) setups. Besides tracking the ORR performance evolution, an ex situ long-term Ag dissolution study is performed. Moreover, morphological changes in the catalyst/support are tracked by identical-location transmission electron microscopy (RDE-IL-TEM). Voltammetry analysis before and after AST reveals a smaller change in ORR activity for Ag/MC, confirming its higher stability. RRDE results reveal a higher increase in the H2O2 yield for Ag/VC after the ASTs. The RDE-IL-TEM measurements demonstrate different degradation processes that can explain the changes in the long term performance. The results in this work point out that the stability of carbon-supported Ag catalysts depends strongly on the morphology of the Ag nanoparticles, which, in turn, can be tuned depending on the chosen carbon support and synthesis method.

11.
iScience ; 26(10): 107775, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736046

RESUMO

High-entropy alloys are claimed to possess superior stability due to thermodynamic contributions. However, this statement mostly lies on a hypothetical basis. In this study, we use on-line inductively coupled plasma mass spectrometer to investigate the dissolution of five representative electrocatalysts in acidic and alkaline media and a wide potential window targeting the most important applications. To address both model and applied systems, we synthesized thin films and carbon-supported nanoparticles ranging from an elemental (Pt) sample to binary (PtRu), ternary (PtRuIr), quaternary (PtRuIrRh), and quinary (PtRuIrRhPd) alloy samples. For certain metals in the high-entropy alloy under alkaline conditions, lower dissolution was observed. Still, the improvement was not striking and can be rather explained by the lowered concentration of elements in the multinary alloys instead of the synergistic effects of thermodynamics. We postulate that this is because of dissolution kinetic effects, which are always present under electrocatalytic conditions, overcompensating thermodynamic contributions.

12.
Angew Chem Int Ed Engl ; 62(34): e202304293, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37341165

RESUMO

The degradation of Pt-containing oxygen reduction catalysts for fuel cell applications is strongly linked to the electrochemical surface oxidation and reduction of Pt. Here, we study the surface restructuring and Pt dissolution mechanisms during oxidation/reduction for the case of Pt(100) in 0.1 M HClO4 by combining operando high-energy surface X-ray diffraction, online mass spectrometry, and density functional theory. Our atomic-scale structural studies reveal that anodic dissolution, detected during oxidation, and cathodic dissolution, observed during the subsequent reduction, are linked to two different oxide phases. Anodic dissolution occurs predominantly during nucleation and growth of the first, stripe-like oxide. Cathodic dissolution is linked to a second, amorphous Pt oxide phase that resembles bulk PtO2 and starts to grow when the coverage of the stripe-like oxide saturates. In addition, we find the amount of surface restructuring after an oxidation/reduction cycle to be potential-independent after the stripe-like oxide has reached its saturation coverage.

13.
J Phys Chem Lett ; 14(14): 3589-3593, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37018542

RESUMO

The first step of electrochemical surface oxidation is extraction of a metal atom from its lattice site to a location in a growing oxide. Here we show by fast simultaneous electrochemical and in situ high-energy surface X-ray diffraction measurements that the initial extraction of Pt atoms from Pt(111) is a fast, potential-driven process, whereas charge transfer for the related formation of adsorbed oxygen-containing species occurs on a much slower time scale and is evidently uncoupled from the extraction process. It is concluded that potential plays a key independent role in electrochemical surface oxidation.

14.
ChemSusChem ; 16(7): e202300406, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960909

RESUMO

Invited for this month's cover is the group of Dunwei Wang from Boston College and Serhiy Cherevko from the Helmholtz Institute Erlangen-Nürnberg for Renewable Energy. The image illustrates the impact of different electrolyte environments on the stability of hematite decorated with an iridium molecular catalyst used for solar water splitting. The Research Article itself is available at 10.1002/cssc.202202319.

15.
ChemSusChem ; 16(7): e202202319, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36602840

RESUMO

Molecular catalysts are promising oxygen evolution promoters in conjunction with photoanodes for solar water splitting. Maintaining the stability of both photoabsorber and cocatalyst is still a prime challenge, with many efforts tackling this issue through sophisticated material designs. Such approaches often mask the importance of the electrode-electrolyte interface and overlook easily tunable system parameters, such as the electrolyte environment, to improve efficiency. We provide a systematic study on the activity-stability relationship of a prominent Fe2 O3 photoanode modified with Ir molecular catalysts using in situ mass spectroscopy. After gaining detailed insights into the dissolution behavior of the Ir cocatalyst, a comprehensive pH study is conducted to probe the impact of the electrolyte on the performance. An inverse trend in Fe and Ir stability is found, with the best activity-stability synergy obtained at pH 9.7. The results bring awareness to the overall photostability and electrolyte engineering when advancing catalysts for solar water splitting.

16.
ACS Appl Mater Interfaces ; 15(1): 1192-1200, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36578102

RESUMO

Stabilization of cathode catalysts in hydrogen-fueled proton-exchange membrane fuel cells (PEMFCs) is paramount to their widespread commercialization. Targeting that aim, Pt-Au alloy catalysts with various compositions (Pt95Au5, Pt90Au10, and Pt80Au20) prepared by magnetron sputtering were investigated. The promising stability improvement of the Pt-Au catalyst, manifested in suppressed platinum dissolution with increasing Au content, was documented over an extended potential range up to 1.5 VRHE. On the other hand, at elevated concentrations, Au showed a detrimental effect on oxygen reduction reaction activity. A systematic study involving complementary characterization techniques, electrochemistry, and Monte Carlo simulations based on density functional theory data enabled us to gain a comprehensive understanding of the composition-activity-stability relationship to find optimal Pt-Au alloying for maintaining the activity of platinum and improving its resistance to dissolution. According to the results, Pt-Au alloy with 10% gold represent the most promising composition retaining the activity of monometallic Pt while suppressing Pt dissolution by 50% at the upper potential limit of 1.2 VRHE and by 20% at devastating 1.5 VRHE.

17.
Chem Sci ; 13(46): 13774-13781, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36544729

RESUMO

The experimental high-throughput (HT) exploration for a suitable solar water splitting photoanode has greatly relied on photoactivity as the sole descriptor to identify a promising region within the searched composition space. Although activity is essential, it is not sufficient for describing the overall performance and excludes other pertinent criteria for photoelectrochemical (PEC) water splitting. Photostability in the form of (photo)electrocatalyst dissolution must be tracked to illustrate the intricate relation between activity and stability for multinary photoelectrocatalysts. To access these two important metrics simultaneously, an automated PEC scanning flow cell coupled to an inductively coupled plasma mass spectrometer (PEC-ICP-MS) was used to study an Fe-Ti-W-O thin film materials library. The results reveal an interrelation between composition, photocurrent density, and element-specific dissolution. These structure-activity-stability correlations can be represented using data science tools like principal component analysis (PCA) in addition to common data visualization approaches. This study demonstrates the importance of addressing two of the most important catalyst metrics (activity and stability) in a rapid and parallel fashion during HT experiments to adequately discover high-performing compositions in the multidimensional search space.

18.
Chem Sci ; 13(32): 9295-9304, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36093024

RESUMO

Recently proposed bimetallic octahedral Pt-Ni electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathodes suffer from particle instabilities in the form of Ni corrosion and shape degradation. Advanced trimetallic Pt-based electrocatalysts have contributed to their catalytic performance and stability. In this work, we propose and analyse a novel quaternary octahedral (oh-)Pt nanoalloy concept with two distinct metals serving as stabilizing surface dopants. An efficient solvothermal one-pot strategy was developed for the preparation of shape-controlled oh-PtNi catalysts doped with Rh and Mo in its surface. The as-prepared quaternary octahedral PtNi(RhMo) catalysts showed exceptionally high ORR performance accompanied by improved activity and shape integrity after stability tests compared to previously reported bi- and tri-metallic systems. Synthesis, performance characteristics and degradation behaviour are investigated targeting deeper understanding for catalyst system improvement strategies. A number of different operando and on-line analysis techniques were employed to monitor the structural and elemental evolution, including identical location scanning transmission electron microscopy and energy dispersive X-ray analysis (IL-STEM-EDX), operando wide angle X-ray spectroscopy (WAXS), and on-line scanning flow cell inductively coupled plasma mass spectrometry (SFC-ICP-MS). Our studies show that doping PtNi octahedral catalysts with small amounts of Rh and Mo suppresses detrimental Pt diffusion and thus offers an attractive new family of shaped Pt alloy catalysts for deployment in PEMFC cathode layers.

19.
J Am Chem Soc ; 144(39): 17966-17979, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36130265

RESUMO

The stability of perovskite oxide catalysts for the oxygen evolution reaction (OER) plays a critical role in their applicability in water splitting concepts. Decomposition of perovskite oxides under applied potential is typically linked to cation leaching and amorphization of the material. However, structural changes and phase transformations at the catalyst surface were also shown to govern the activity of several perovskite electrocatalysts under applied potential. Hence, it is crucial for the rational design of durable perovskite catalysts to understand the interplay between the formation of active surface phases and stability limitations under OER conditions. In the present study, we reveal a surface-dominated activation and deactivation mechanism of the prominent electrocatalyst La0.6Sr0.4CoO3-δ under steady-state OER conditions. Using a multiscale microscopy and spectroscopy approach, we identify the evolving Co-oxyhydroxide as catalytically active surface species and La-hydroxide as inactive species involved in the transient degradation behavior of the catalyst. While the leaching of Sr results in the formation of mixed surface phases, which can be considered as a part of the active surface, the gradual depletion of Co from a self-assembled active CoO(OH) phase and the relative enrichment of passivating La(OH)3 at the electrode surface result in the failure of the perovskite catalyst under applied potential.

20.
ACS Catal ; 12(15): 9540-9548, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35966603

RESUMO

The lack of efficient and durable proton exchange membrane fuel cell electrocatalysts for the oxygen reduction reaction is still restraining the present hydrogen technology. Graphene-based carbon materials have emerged as a potential solution to replace the existing carbon black (CB) supports; however, their potential was never fully exploited as a commercial solution because of their more demanding properties. Here, a unique and industrially scalable synthesis of platinum-based electrocatalysts on graphene derivative (GD) supports is presented. With an innovative approach, highly homogeneous as well as high metal loaded platinum-alloy (up to 60 wt %) intermetallic catalysts on GDs are achieved. Accelerated degradation tests show enhanced durability when compared to the CB-supported analogues including the commercial benchmark. Additionally, in combination with X-ray photoelectron spectroscopy Auger characterization and Raman spectroscopy, a clear connection between the sp 2 content and structural defects in carbon materials with the catalyst durability is observed. Advanced gas diffusion electrode results show that the GD-supported catalysts exhibit excellent mass activities and possess the properties necessary to reach high currents if utilized correctly. We show record-high peak power densities in comparison to the prior best literature on platinum-based GD-supported materials which is promising information for future application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA