Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836682

RESUMO

Persistent Organic Pollutants (POPs), particularly the indicator polychlorinated biphenyls (PCBs), were first quantified in water and sediments of two wadis, Boujemaâ and Seybouse, as well as in the effluents from a fertilizer and phytosanitary production industrial plant (Fertial). Since these contaminated discharges end in Annaba Bay (Algeria) in the Mediterranean Sea, with a significant level of contamination, all the potential sources should be identified. In this work, this task is conducted by a multivariate analysis. Liquid-liquid extraction and gas chromatography/mass spectrometry (GC-MS) methods were applied to quantify seven PCB congeners, usually taken as indicators of contamination. The sum of the PCB concentrations in the sediments ranged from 1 to 6.4 µg/kg dw (dry weight) and up to 0.027 µg/L in waters. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used for the multivariate analysis, indicating that the main sources of PCB emissions in the bay are urban/domestic and agricultural/industrial. The outfalls that mostly contribute to the pollution of the gulf are the Boujemaâ wadi, followed by the Seybouse wadi, and finally by the Fertial cluster and more precisely the annex basin of the plant. Although referring to a specific site of local importance, the work aims to present a procedure and a methodological analysis that can be potentially applicable to further case studies all over the world.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Bifenilos Policlorados/análise , Argélia , Monitoramento Ambiental , Poluentes Químicos da Água/química , Baías , Sedimentos Geológicos/química
2.
Reg Environ Change ; 21(2): 33, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776560

RESUMO

Wetlands are critically important for biodiversity and human wellbeing, but face a range of challenges. This is especially true in the Mediterranean region, where wetlands support endemic and threatened species and remain integral to human societies, but have been severely degraded in recent decades. Here, in order to raise awareness of future challenges and opportunities for Mediterranean wetlands, and to inform proactive research and management, we identified (a) 50 key issues that might affect Mediterranean wetlands between 2020 and 2050, and (b) 50 important research questions that, if answered, would have the greatest impact on the conservation of Mediterranean wetlands between 2020 and 2050. We gathered ideas through an online survey and review of recent literature. A diverse assessment panel prioritised ideas through an iterative, anonymised, Delphi-like process of scoring, voting and discussion. The prioritised issues included some that are already well known but likely to have a large impact on Mediterranean wetlands in the next 30 years (e.g. the accumulation of dams and reservoirs, plastic pollution and weak governance), and some that are currently overlooked in the context of Mediterranean wetlands (e.g. increasing desalination capacity and development of antimicrobial resistance). Questions largely focused on how best to carry out conservation interventions, or understanding the impacts of threats to inform conservation decision-making. This analysis will support research, policy and practice related to environmental conservation and sustainable development in the Mediterranean, and provides a model for similar analyses elsewhere in the world. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10113-020-01743-1.

3.
Ann Biol Clin (Paris) ; 74(2): 219-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27029726

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy. More than 200 mutations in the G6PD gene have been described. In Tunisia, the A-African and the B-Mediterranean mutations predominate the mutational spectrum. The purpose of this study was to apply the amplification refractory mutation system (ARMS-PCR) to the identification of Gd A+, Gd A- and Gd B- variants in a cohort of deficient individuals and to establish a phenotype/genotype association. 90 subjects were screened for enzymatic deficiency by spectrophotometric assay. The molecular analyses were performed in a group of 50 unrelated patients. Of the 54 altered chromosomes examined, 60% had the Gd A- mutation, 18% showed the Gd B- mutation and in 20% of cases, no mutations have been identified. The ARMS-PCR showed complete concordance with the endonuclease cleavage reference method and agreed perfectly with previous Tunisian studies where Gd A- and Gd B- were the most encountered. Also, similarities in spectrum mutations with North African and Mediterranean countries suggest gene migration from Africa to Europe through Spain. In conclusion, ARMS has been introduced in this study for common G6PD alleles identification in Tunisia. It gives some advantages compared to the traditional endonuclease digestion method since it is more convenient and timesaving and also offers the possibility to be applied in mass screening surveys.


Assuntos
Análise Mutacional de DNA/métodos , Estudos de Associação Genética/métodos , Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/genética , Mutação de Sentido Incorreto , Reação em Cadeia da Polimerase/métodos , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Pré-Escolar , Feminino , Frequência do Gene , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Tunísia , Adulto Jovem
4.
Water Environ Res ; 84(8): 673-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22953452

RESUMO

Groundwater is the main source of water in Mediterranean, water-scarce, semiarid regions of Tunisia, Africa. In this study of the Korba coastal aquifer, 17 water wells were studied to assess their suitability for irrigation and drinking purposes. Assessment parameters include pH, salinity, specific ion toxicity, sodium adsorption ratio, nutrients, trace metals pollutants, and fecal indicators and pathogens. Results indicate that salinity of groundwater varied between 0.36 dS/m and 17.4 dS/m; in addition, its degree of restriction is defined as "none", "slight to moderate", and "severe" for 18, 23, and 59% of the studied wells, respectively. To control salts brought in by irrigation waters, the question arises as to how much water should be used to reach crop and soil requirements. To answer this question, a new approach that calculates the optimum amount of irrigation water considering the electrical conductivity of well water (ECw), field crops, and the semiarid meteorological local conditions for evapotranspiration and rainfall is developed. This is applied to the authors' case study area; barley and lettuce were selected among the commonly grown crops because they are high- and low-salinity tolerant, respectively. Leaching requirements were found to be independent of the crop selected, and depend only on the season, that is, 250 to 260 mm/month in the driest season, with a minimum of 47 mm/month though all seasons. A high bacteriological contamination appears in almost all samples. However, if disinfected and corrected for pH, all the well waters can be used for animal farming (including livestock and poultry), although only 29% could be used for human consumption.


Assuntos
Irrigação Agrícola , Monitoramento Ambiental/métodos , Água Subterrânea/química , Água Subterrânea/normas , Poluentes Químicos da Água/química , Condutividade Elétrica , Hordeum , Lactuca , Salinidade , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA