Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38539877

RESUMO

In recent years, research on the discovery of natural compounds with potent antioxidant properties has resulted in growing interest in these compounds due to their potential therapeutic applications in oxidative-stress-related diseases. Argan oil, derived from the kernels of a native tree from Morocco, Argania spinosa, is renowned for its rich composition of bioactive compounds, prominently tocopherols, polyphenols, and fatty acids. Interestingly, a large body of data has shown that several components of argan oil activate the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, playing a crucial role in the cellular defense against oxidative stress. Activation of this Nrf2 pathway by argan oil components leads to the increased expression of downstream target proteins like NAD(P)H quinone oxidoreductase (NQO1), superoxide dismutase (SOD), heme oxygenase 1 (HO-1), and catalase (CAT). Such Nrf2 activation accounts for several health benefits related to antioxidant defense, anti-inflammatory effects, cardiovascular health, and neuroprotection in organisms. Furthermore, the synergistic action of the bioactive compounds in argan oil enhances the Nrf2 pathway. Accordingly, the modulation of the Kelch-like ECH associated protein 1 (Keap1)/Nrf2 signaling pathway by these components highlights the potential of argan oil in protecting cells from oxidative stress and underlines its relevance in dietetic prevention and therapeutic applications. This review aims to provide an overview of how major compounds in argan oil activate the Nrf2 pathway, updating our knowledge on their mechanisms of action and associated health benefits.

2.
Molecules ; 28(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37570894

RESUMO

Recently, the study of the protective powers of medicinal plants has become the focus of several studies. Attention has been focused on the identification of new molecules with antioxidant and chelating properties to counter reactive oxygen species (ROS) involved as key elements in several pathologies. Considerable attention is given to argan oil (AO) and olive oil (OO) due to their particular composition and preventive properties. Our study aimed to determine the content of AO and OO on phenolic compounds, chlorophylls, and carotenoid pigments and their antioxidant potential by FRAP and DPPH tests. Thus, several metallic elements can induce oxidative stress, as a consequence of the formation of ROS. Iron is one of these metal ions, which participates in the generation of free radicals, especially OH from H2O2 via the Fenton reaction, initiating oxidative stress. To study the antioxidant potential of AO and OO, we evaluated their preventives effects against oxidative stress induced by ferrous sulfate (FeSO4) in the protozoan Tetrahymena pyriformis and mice. Then, we evaluated the activities of the enzymatic (superoxide dismutase (SOD), glutathione peroxidase (GPx)) and metabolite markers (lipid peroxidation (MDA) and glutathione (GSH)) of the antioxidant balance. The results of the antioxidant compounds show that both oils contain phenolic compounds and pigments. Moreover, AO and OO exhibit antioxidant potential across FRAP and DPPH assays. On the other hand, the results in Tetrahymena pyriformis and mice show a variation in the level of iron-changed SOD and GPx activities and MDA and GSH levels. By contrast, treating Tetrahymena pyriformis and mice with argan and olive oils shows significant prevention in the SOD and GPx activities. These results reveal that the iron-changed ROS imbalance can be counteracted by AO and OO, which is probably related to their composition, especially their high content of polyphenols, sterols, and tocopherols, which is underlined by their antioxidant activities.


Assuntos
Antioxidantes , Ferro , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Azeite de Oliva/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ferro/farmacologia , Peróxido de Hidrogênio/farmacologia , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Estresse Oxidativo , Peroxidação de Lipídeos , Glutationa/metabolismo , Fenóis/farmacologia , Superóxido Dismutase/metabolismo
3.
Front Mol Neurosci ; 16: 1170313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138705

RESUMO

Microglial cells ensure essential roles in brain homeostasis. In pathological condition, microglia adopt a common signature, called disease-associated microglial (DAM) signature, characterized by the loss of homeostatic genes and the induction of disease-associated genes. In X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disease, microglial defect has been shown to precede myelin degradation and may actively contribute to the neurodegenerative process. We previously established BV-2 microglial cell models bearing mutations in peroxisomal genes that recapitulate some of the hallmarks of the peroxisomal ß-oxidation defects such as very long-chain fatty acid (VLCFA) accumulation. In these cell lines, we used RNA-sequencing and identified large-scale reprogramming for genes involved in lipid metabolism, immune response, cell signaling, lysosome and autophagy, as well as a DAM-like signature. We highlighted cholesterol accumulation in plasma membranes and observed autophagy patterns in the cell mutants. We confirmed the upregulation or downregulation at the protein level for a few selected genes that mostly corroborated our observations and clearly demonstrated increased expression and secretion of DAM proteins in the BV-2 mutant cells. In conclusion, the peroxisomal defects in microglial cells not only impact on VLCFA metabolism but also force microglial cells to adopt a pathological phenotype likely representing a key contributor to the pathogenesis of peroxisomal disorders.

4.
BMC Anesthesiol ; 23(1): 80, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927341

RESUMO

BACKGROUND: Potassium channels (KCa3.1; Kv1.3; Kir2.1) are necessary for microglial activation, a pivotal requirement for the development of Perioperative Neurocognitive Disorders (PNDs). We previously reported on the role of microglial Kv1.3 for PNDs; the present study sought to determine whether inhibiting KCa3.1 channel activity affects neuroinflammation and prevents development of PND. METHODS: Mice (wild-type [WT] and KCa3.1-/-) underwent aseptic tibial fracture trauma under isoflurane anesthesia or received anesthesia alone. WT mice received either TRAM34 (a specific KCa3.1 channel inhibitor) dissolved in its vehicle (miglyol) or miglyol alone. Spatial memory was assessed in the Y-maze paradigm 6 h post-surgery/anesthesia. Circulating interleukin-6 (IL-6) and high mobility group box-1 protein (HMGB1) were assessed by ELISA, and microglial activitation Iba-1 staining. RESULTS: In WT mice surgery induced significant cognitive decline in the Y-maze test, p = 0.019), microgliosis (p = 0.001), and increases in plasma IL-6 (p = 0.002) and HMGB1 (p = 0.001) when compared to anesthesia alone. TRAM34 administration attenuated the surgery-induced changes in cognition, microglial activation, and HMGB1 but not circulating IL-6 levels. In KCa3.1-/- mice surgery neither affected cognition nor microgliosis, although circulating IL-6 levels did increase (p < 0.001). CONCLUSION: Similar to our earlier report with Kv1.3, perioperative microglial KCa3.1 blockade decreases immediate perioperative cognitive changes, microgliosis as well as the peripheral trauma marker HMGB1 although surgery-induced IL-6 elevation was unchanged. Future research should address whether a synergistic interaction exists between blockade of Kv1.3 and KCa3.1 for preventing PNDs.


Assuntos
Proteína HMGB1 , Doenças Neuroinflamatórias , Camundongos , Animais , Interleucina-6 , Transtornos Neurocognitivos , Cognição , Camundongos Endogâmicos C57BL
5.
Antioxidants (Basel) ; 12(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671029

RESUMO

Oxidative stress and inflammation are the key players in neuroinflammation, in which microglia dysfunction plays a central role. Previous studies suggest that argan oil attenuates oxidative stress, inflammation, and peroxisome dysfunction in mouse brains. In this study, we explored the effects of two major argan oil (AO) phytosterols, Schottenol (Schot) and Spinasterol (Spina), on oxidative stress, inflammation, and peroxisomal dysfunction in two murine microglial BV-2 cell lines, wild-ype (Wt) and Acyl-CoA oxidase 1 (Acox1)-deficient cells challenged with LPS treatment. Herein, we used an MTT test to reveal no cytotoxicity for both phytosterols with concentrations up to 5 µM. In the LPS-activated microglial cells, cotreatment with each of these phytosterols caused a significant decrease in intracellular ROS production and the NO level released in the culture medium. Additionally, Schot and Spina were able to attenuate the LPS-dependent strong induction of Il-1ß and Tnf-α mRNA levels, as well as the iNos gene and protein expression in both Wt and Acox1-/- microglial cells. On the other hand, LPS treatment impacted both the peroxisomal antioxidant capacity and the fatty acid oxidation pathway. However, both Schot and Spina treatments enhanced ACOX1 activity in the Wt BV-2 cells and normalized the catalase activity in both Wt and Acox1-/- microglial cells. These data suggest that Schot and Spina can protect cells from oxidative stress and inflammation and their harmful consequences for peroxisomal functions and the homeostasis of microglial cells. Collectively, our work provides a compelling argument for the protective mechanisms of two major argan oil phytosterols against LPS-induced brain neuroinflammation.

6.
Front Mol Neurosci ; 16: 1299314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164407

RESUMO

Microglia are crucial for brain homeostasis, and dysfunction of these cells is a key driver in most neurodegenerative diseases, including peroxisomal leukodystrophies. In X-linked adrenoleukodystrophy (X-ALD), a neuroinflammatory disorder, very long-chain fatty acid (VLCFA) accumulation due to impaired degradation within peroxisomes results in microglial defects, but the underlying mechanisms remain unclear. Using CRISPR/Cas9 gene editing of key genes in peroxisomal VLCFA breakdown (Abcd1, Abcd2, and Acox1), we recently established easily accessible microglial BV-2 cell models to study the impact of dysfunctional peroxisomal ß-oxidation and revealed a disease-associated microglial-like signature in these cell lines. Transcriptomic analysis suggested consequences on the immune response. To clarify how impaired lipid degradation impacts the immune function of microglia, we here used RNA-sequencing and functional assays related to the immune response to compare wild-type and mutant BV-2 cell lines under basal conditions and upon pro-inflammatory lipopolysaccharide (LPS) activation. A majority of genes encoding proinflammatory cytokines, as well as genes involved in phagocytosis, antigen presentation, and co-stimulation of T lymphocytes, were found differentially overexpressed. The transcriptomic alterations were reflected by altered phagocytic capacity, inflammasome activation, increased release of inflammatory cytokines, including TNF, and upregulated response of T lymphocytes primed by mutant BV-2 cells presenting peptides. Together, the present study shows that peroxisomal ß-oxidation defects resulting in lipid alterations, including VLCFA accumulation, directly reprogram the main cellular functions of microglia. The elucidation of this link between lipid metabolism and the immune response of microglia will help to better understand the pathogenesis of peroxisomal leukodystrophies.

7.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233157

RESUMO

Exposure to endotoxins (lipopolysaccharides, LPS) may lead to a potent inflammatory cytokine response and a severe impairment of metabolism, causing tissue injury. The protective effect provided by cactus seed oil (CSO), from Opuntia ficus-indica, was evaluated against LPS-induced inflammation, dysregulation of peroxisomal antioxidant, and ß-oxidation activities in the brain and the liver. In both tissues, a short-term LPS exposure increased the proinflammatory interleukine-1ß (Il-1ß), inducible Nitroxide synthase (iNos), and Interleukine-6 (Il-6). In the brain, CSO action reduced only LPS-induced iNos expression, while in the liver, CSO attenuated mainly the hepatic Il-1ß and Il-6. Regarding the peroxisomal antioxidative functions, CSO treatment (as Olive oil (OO) or Colza oil (CO) treatment) induced the hepatic peroxisomal Cat gene. Paradoxically, we showed that CSO, as well as OO or CO, treatment can timely induce catalase activity or prevent its induction by LPS, respectively, in both brain and liver tissues. On the other hand, CSO (as CO) pretreatment prevented the LPS-associated Acox1 gene and activity decreases in the liver. Collectively, CSO showed efficient neuroprotective and hepato-protective effects against LPS, by maintaining the brain peroxisomal antioxidant enzyme activities of catalase and glutathione peroxidase, and by restoring hepatic peroxisomal antioxidant and ß-oxidative capacities.


Assuntos
Opuntia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Encéfalo/metabolismo , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Camundongos , Azeite de Oliva/farmacologia , Opuntia/metabolismo
8.
FEBS J ; 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35880408

RESUMO

Maintaining energy balance is essential for survival and health. This physiological function is controlled by the brain, which adapts food intake to energy needs. Indeed, the brain constantly receives a multitude of biological signals that are derived from digested foods or that originate from the gastrointestinal tract, energy stores (liver and adipose tissues) and other metabolically active organs (muscles). These signals, which include circulating nutrients, hormones and neuronal inputs from the periphery, collectively provide information on the overall energy status of the body. In the brain, several neuronal populations can specifically detect these signals. Nutrient-sensing neurons are found in discrete brain areas and are highly enriched in the hypothalamus. In turn, specialized brain circuits coordinate homeostatic responses acting mainly on appetite, peripheral metabolism, activity and arousal. Accumulating evidence shows that hypothalamic microglial cells located at the vicinity of these circuits can influence the brain control of energy balance. However, microglial cells could have opposite effects on energy balance, that is homeostatic or detrimental, and the conditions for this shift are not totally understood yet. One hypothesis relies on the extent of microglial activation, and nutritional lipids can considerably change it.

9.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455460

RESUMO

During sepsis, the imbalance between oxidative insult and body antioxidant response causes the dysfunction of organs, including the brain and liver. Exposing mice to bacterial lipopolysaccharides (LPS) results in a similar pathophysiological outcome. The protection offered by argan oil was studied against LPS-induced oxidative stress, dysregulation of peroxisomal antioxidants, and ß-oxidation activities in the brain and liver. In a short-term LPS treatment, lipid peroxidation (malonaldehyde assay) increased in the brain and liver with upregulations of proinflammatory tumor necrosis factor (Tnf)-α and anti-inflammatory interleukin (Il)-10 genes, especially in the liver. Although exposure to olive oil (OO), colza oil (CO), and argan oil (AO) prevented LPS-induced lipid peroxidation in the brain and liver, only AO exposure protected against liver inflammation. Remarkably, only exposure to AO prevented LPS-dependent glutathione (GSH) dysregulation in the brain and liver. Furthermore, exposure to AO increased more efficiently than OO and CO in both organs, peroxisomal antioxidant capacity via induction of catalase (Cat) gene, protein and activity expression levels, and superoxide dismutase (Sod1) mRNA and activity levels. Interestingly, LPS decreased protein levels of the peroxisomal fatty acid-ATP binding cassette (ABC) transporters, ABCD1 and ABCD2, and increased acyl-CoA oxidase 1 (ACOX1) protein expression. Moreover, these LPS effects were attenuated for ABCD1 and ACOX1 in the brain of mice pretreated with AO. Our data collectively highlight the protective effects of AO against early oxidative stress caused by LPS in the brain and liver and their reliance on the preservation of peroxisomal functions, including antioxidant and ß-oxidation activities, making AO a promising candidate for the prevention and management of sepsis.

10.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445672

RESUMO

In mammalian cells, two cellular organelles, mitochondria and peroxisomes, share the ability to degrade fatty acid chains. Although each organelle harbors its own fatty acid ß-oxidation pathway, a distinct mitochondrial system feeds the oxidative phosphorylation pathway for ATP synthesis. At the same time, the peroxisomal ß-oxidation pathway participates in cellular thermogenesis. A scientific milestone in 1965 helped discover the hepatomegaly effect in rat liver by clofibrate, subsequently identified as a peroxisome proliferator in rodents and an activator of the peroxisomal fatty acid ß-oxidation pathway. These peroxisome proliferators were later identified as activating ligands of Peroxisome Proliferator-Activated Receptor α (PPARα), cloned in 1990. The ligand-activated heterodimer PPARα/RXRα recognizes a DNA sequence, called PPRE (Peroxisome Proliferator Response Element), corresponding to two half-consensus hexanucleotide motifs, AGGTCA, separated by one nucleotide. Accordingly, the assembled complex containing PPRE/PPARα/RXRα/ligands/Coregulators controls the expression of the genes involved in liver peroxisomal fatty acid ß-oxidation. This review mobilizes a considerable number of findings that discuss miscellaneous axes, covering the detailed expression pattern of PPARα in species and tissues, the lessons from several PPARα KO mouse models and the modulation of PPARα function by dietary micronutrients.


Assuntos
Ácidos Graxos/metabolismo , PPAR alfa/metabolismo , Peroxissomos/metabolismo , Acil-CoA Oxidase/metabolismo , Animais , Humanos , Fígado/metabolismo , Oxirredução , Oxirredutases/metabolismo , PPAR alfa/fisiologia , Proliferadores de Peroxissomos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores do Ácido Retinoico/metabolismo , Elementos de Resposta/genética , Receptores X de Retinoides/metabolismo , Ativação Transcricional/genética
11.
J Food Biochem ; 45(4): e13691, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33694172

RESUMO

Investigation of dietary biologically active phytochemicals is of interest due to the availability, low cost, and low rate of side effects of these substances. The main objective of this work was to investigate the influence of the essential oil (EO) extracted from the aerial parts of Artemisia dracunculus on the antioxidant capacity of cells as this plant is one of the most available and widely used as spice and in folk medicine. For this, BV-2 microglial wild type (WT) and acyl-CoA oxidase type 1 (ACOX1) deficient cells (Acox1-/- ) were used. Acox1-/- cells were applied as the model of cellular oxidative damage. The main component of EO of A. dracunculus was estragole, which was reaching 84.9% in plants cultivated at high altitude Armenian landscape. IC50 value of EO in 1,1-diphenyl-2-picrylhydrazyl assay was 94.2 µg/ml. Sub-cytotoxic concentration in the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test for both BV-2 WT and Acox1-/- cell lines was 5.10-1  µg/ml. Seventy-two-hours treatment with EO leads to the increased viability (up to 12% in WT and up to 14% -in BV-2 Acox1-/- cells). The 48-hr treatment increased the ACOX1 activity up to 70% in WT cells. Catalase and superoxide dismutase activities of both cell lines increased following the 24-48-hr treatment. These results indicate that A. dracunculus EO can be considered as a potential protective agent useful in preventive medicine.


Assuntos
Artemisia , Óleos Voláteis , Antioxidantes/farmacologia , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia
12.
Liver Transpl ; 27(7): 997-1006, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33306256

RESUMO

Studies on how to protect livers perfused ex vivo can help design strategies for hepatoprotection and liver graft preservation. The protection of livers isolated from 24-hour versus 18-hour starved rats has been previously attributed to autophagy, which contributes to the energy-mobilizing capacity ex vivo. Here, we explored the signaling pathways responsible for this protection. In our experimental models, 3 major signaling candidates were considered in view of their abilities to trigger autophagy: high mobility group box 1 (HMGB1), adenosine monophosphate-activated protein kinase (AMPK), and purinergic receptor P2Y13. To this end, ex vivo livers isolated from starved rats were perfused for 135 minutes, after which perfusate samples were studied for protein release and biopsies were performed for evaluating signaling protein contents. For HMGB1, no significant difference was observed between livers isolated from rats starved for 18 and 24 hours at perfusion times of both 0 and 135 minutes. The phosphorylated and total forms of AMPK, but not their ratios, were significantly higher in 24-hour fasted than in 18-hour fasted livers. However, although the level of phosphorylated AMPK increased, perfusing ex vivo 18-hour fasted livers with 1 mM 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, did not protect the livers. In addition, the adenosine diphosphate (ADP; and not adenosine monophosphate [AMP]) to AMP + ADP + adenosine triphosphate ratio increased in the 24-hour starved livers compared with that in the 18-hour starved livers. Moreover, perfusing 24-hour starved livers with 0.1 mM 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde (MRS2211), a specific antagonist of the P2Y13 receptor, induced an increase in cytolysis marker levels in the perfusate samples and a decrease in the levels of autophagic marker microtubule-associated proteins 1 light chain 3 II (LC3II)/actin (and a loss of p62/actin decrease), indicating autophagy inhibition and a loss of protection. The P2Y13 receptor and ADP (a physiological activator of this receptor) are involved in the protection of ex vivo livers. Therapeutic opportunities for improving liver graft preservation through the stimulation of the ADP/P2Y13 receptor axis are further discussed.


Assuntos
Transplante de Fígado , Difosfato de Adenosina , Animais , Autofagia , Fígado , Transplante de Fígado/efeitos adversos , Perfusão , Ratos
13.
Adv Exp Med Biol ; 1299: 91-104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33417210

RESUMO

Peroxisomopathies are rare diseases due to dysfunctions of the peroxisome in which this organelle is either absent or with impaired activities. These diseases, at the exception of type I hyperoxaluria and acatalasaemia, affect the central and peripheral nervous system. Due to the significant impact of peroxisomal abnormalities on the functioning of nerve cells, this has led to an interest in peroxisome in common neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis. In these diseases, a role of the peroxisome is suspected on the basis of the fatty acid and phospholipid profile in the biological fluids and the brains of patients. It is also speculated that peroxisomal dysfunctions could contribute to oxidative stress and mitochondrial alterations which are recognized as major players in the development of neurodegenerative diseases. Based on clinical and in vitro studies, the data obtained support a potential role of peroxisome in Alzheimer's disease and multiple sclerosis.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Peroxissomos/metabolismo , Peroxissomos/patologia , Humanos , Estresse Oxidativo
14.
Nutrition ; 67-68: 110517, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31479844

RESUMO

OBJECTIVE: Dietary and energetic restrictions are endowed with protection against experimental injuries. However, a drop in cell energetic status under a critical threshold may prevent protection, as previously observed for livers isolated from rat donors undergoing 18-h fasting versus feeding. The aim of this study was to further explore, in the latter model, links between nutritional status, energy availability, and protection through lengthening of rat fasting to 24 h and withdrawal of energy sources from perfusions. METHODS: Energy-free perfused ex vivo livers from fed, 18-h-fasted, and 24-h-fasted rats were studied during 135 min for cytolysis (potassium, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase releases in perfusates), cell deaths (activated caspase-3 [apoptosis], LC3 II/actin and p62/actin ratios [autophagy]), glycogen stores, glucose, and lactate production. RESULTS: Cytolysis was significantly increased by 18-h and 24-h fasting versus feeding but unexpectedly the increase was less for 24-h fasting than it was for 18-h fasting. Apoptotic marker caspase 3 significantly increased under fed and 18-h fasting but not 24-h fasting conditions. Autophagic marker LC3 II/actin significantly increased during perfusion in the 24-h fasted group but neither fed nor 18-h fasted groups. Autophagic induction also was supported by a drop in the p62/actin ratio. Under perfusion with 3-methyladenine, a standard autophagy inhibitor, protection and enhanced autophagy provided by 24-h but not 18-h fasting were lost without affecting apoptosis. CONCLUSIONS: Liver protections are obviously influenced by nutritional status in a way that is parallel to hepatic energy mobilization capacities (glycogen plus autophagy) with a decreased order of protection: Fed >24-h fasted >18-h fasted >24-h fasted + 3-methyladenine livers. By showing that autophagy induction limits starvation-induced cytolysis, the present work supports the emerging view that autophagy inducers might improve health benefits of diet restriction.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Metabolismo Energético/fisiologia , Jejum/fisiologia , Estado Nutricional/fisiologia , Perfusão/efeitos adversos , Animais , Modelos Animais de Doenças , Fígado/metabolismo , Fatores de Proteção , Ratos
15.
Int J Mol Sci ; 20(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398943

RESUMO

The immune response is essential to protect organisms from infection and an altered self. An organism's overall metabolic status is now recognized as an important and long-overlooked mediator of immunity and has spurred new explorations of immune-related metabolic abnormalities. Peroxisomes are essential metabolic organelles with a central role in the synthesis and turnover of complex lipids and reactive species. Peroxisomes have recently been identified as pivotal regulators of immune functions and inflammation in the development and during infection, defining a new branch of immunometabolism. This review summarizes the current evidence that has helped to identify peroxisomes as central regulators of immunity and highlights the peroxisomal proteins and metabolites that have acquired relevance in human pathologies for their link to the development of inflammation, neuropathies, aging and cancer. This review then describes how peroxisomes govern immune signaling strategies such as phagocytosis and cytokine production and their relevance in fighting bacterial and viral infections. The mechanisms by which peroxisomes either control the activation of the immune response or trigger cellular metabolic changes that activate and resolve immune responses are also described.


Assuntos
Suscetibilidade a Doenças , Imunidade , Inflamação/etiologia , Inflamação/metabolismo , Peroxissomos/metabolismo , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Biomarcadores , Metabolismo Energético , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade/genética , Imunomodulação , Fagocitose/genética , Fagocitose/imunologia , Transdução de Sinais
16.
Curr Pharm Des ; 25(15): 1791-1805, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31298157

RESUMO

BACKGROUND: The effects of vegetable oils on human health depend on their components. Therefore, their profiles of lipid nutrients and polyphenols were determined. OBJECTIVE: To establish and compare the fatty acid, tocopherol, phytosterol and polyphenol profiles of Mediterranean oils: cosmetic and dietary argan oils (AO; Morocco: Agadir, Berkane); olive oils (OO; Morocco, Spain, Tunisia); milk thistle seed oils (MTSO; Tunisia: Bizerte, Sousse, Zaghouane); nigella seed oil (NSO). METHODS: The biochemical profiles were determined by gas chromatography-flame ionization, high performance liquid chromatography and gas chromatography, coupled with mass spectrometry as required. The antioxidant and cytoprotective activities were evaluated with the KRL (Kit Radicaux Libres) and the fluorescein diacetate tests on nerve cells treated with 7-ketocholesterol (7KC). RESULTS: The fatty acid profile revealed high linoleic acid (C18:2 n-6) content in AO, OO, MTSO and NSO. The highest levels of oleic acid (C18:1 n-9) were found in AO and OO. The tocopherol profile showed that Agadir AO contained the highest amount of α-tocopherol, also present at high level in MTSO and Tunisian OO; Berkane AO was rich in γ-tocopherol. The phytosterol profile indicated that ß-sitosterol was predominant in the oils, except AO; spinasterol was only present in AO. Polyphenol profiles underlined that OO was the richest in polyphenols; hydroxytyrosol was only found in OO; few polyphenols were detected in AO. The oils studied have antioxidant activities, and all of them, except NSO, prevented 7KC-induced cell death. The antioxidant characteristics of AO were positively correlated with procatechic acid and compestanol levels. CONCLUSION: Based on their biochemical profiles, antioxidant and cytoprotective characteristics, AO, OO, and MTSO are potentially beneficial to human health.


Assuntos
Ácidos Graxos/análise , Fitosteróis/análise , Óleos de Plantas/análise , Polifenóis/análise , Tocoferóis/análise , Animais , Antioxidantes/análise , Linhagem Celular , Humanos , Camundongos , Silybum marianum/química , Nigella/química , Azeite de Oliva/química , Sementes/química
17.
Curr Pharm Des ; 25(16): 1847-1860, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31267861

RESUMO

The World Health Organization (WHO) report from 2014 documented that non-communicable socalled civilization diseases such as cardiovascular disease, chronic respiratory diseases, cancer or type 2 diabetes are responsible for over 50% of all premature deaths in the world. Research carried out over the past 20 years has provided data suggesting that diet is an essential factor influencing the risk of development of these diseases. The increasing knowledge on chemopreventive properties of certain food ingredients, in particular, those of plant origin, opened the discussion on the possibility to use edible plants or their active components in the prevention of these chronic diseases. Health-promoting properties of plant foods are associated with the presence of secondary metabolites that can affect many biological mechanisms of critical importance to the proper functioning of the human organism. Particularly, there have been numerous investigations indicating strong physiological effects of bioactive plant phenols belonging to the flavonoid family. These observations initiated mass production of dietary supplements containing flavonoids commercialized under the name antioxidants, even if their chemical properties did not justify such a term. However, epidemiological studies revealed that isolated bioactive phytochemicals are not as effective as fruits and vegetables containing these substances whereas they are of interest of the functional food industry. In this paper, the critical assessment of reasons for this turn of events has been attempted and the concept of food synergy has been suggested as a future strategy of dietary chemoprevention.


Assuntos
Dieta , Suplementos Nutricionais , Doenças não Transmissíveis/prevenção & controle , Compostos Fitoquímicos/farmacologia , Antioxidantes , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Frutas , Humanos , Neoplasias , Doenças Respiratórias , Verduras
18.
Free Radic Res ; 53(5): 535-561, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31039616

RESUMO

Mitochondrial dysfunction and oxidative stress are involved in neurodegenerative diseases associated with an enhancement of lipid peroxidation products such as 7ß-hydroxycholesterol (7ß-OHC). It is, therefore, important to study the ability of 7ß-OHC to trigger mitochondrial defects, oxidative stress, metabolic dysfunctions and cell death, which are hallmarks of neurodegeneration, and to identify cytoprotective molecules. The effects of biotin were evaluated on 158N murine oligodendrocytes, which are myelin synthesizing cells, exposed to 7ß-OHC (50 µM) with or without biotin (10 and 100 nM) or α-tocopherol (positive control of cytoprotection). The effects of biotin on 7ß-OHC activities were determined using different criteria: cell adhesion; plasma membrane integrity; redox status. The impact on mitochondria was characterized by the measurement of transmembrane mitochondrial potential (ΔΨm), reactive oxygen species (ROS) overproduction, mitochondrial mass, quantification of cardiolipins and organic acids. Sterols and fatty acids were also quantified. Cell death (apoptosis, autophagy) was characterized by the enumeration of apoptotic cells, caspase-3 activation, identification of autophagic vesicles, and activation of LC3-I into LC3-II. Biotin attenuates 7ß-OHC-induced cytotoxicity: loss of cell adhesion was reduced; antioxidant activities were normalized. ROS overproduction, protein and lipid oxidation products were decreased. Biotin partially restores mitochondrial functions: attenuation of the loss of ΔΨm; reduced levels of mitochondrial O2•- overproduction; normalization of cardiolipins and organic acid levels. Biotin also normalizes cholesterol and fatty acid synthesis, and prevents apoptosis and autophagy (oxiapoptophagy). Our data support that biotin, which prevents oligodendrocytes damages, could be useful in the treatment of neurodegeneration and demyelination.


Assuntos
Antioxidantes/farmacologia , Biotina/farmacologia , Hidroxicolesteróis/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , alfa-Tocoferol/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Catalase/genética , Catalase/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Ácidos Graxos/biossíntese , Regulação da Expressão Gênica , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Hidroxicolesteróis/farmacologia , Metabolismo dos Lipídeos/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
19.
Free Radic Res ; 53(sup1): 1101-1112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31039629

RESUMO

Mediterranean diet (MD) is the most relevant nutritional aspect of the multisecular Mediterranean civilisation which includes wine as an element of health and wellbeing when consumed with moderation. Mediterranean meals provide food micronutrients which include polyphenols, especially resveratrol from grape and red wine. MD, also called Cretan diet, has been proven to prevent diseases including cardiovascular pathologies, cancer, and to prevent aging. Interestingly, the grape and more precisely in grape skin contains the highest concentration of RSV. In consequence, red wine is the most concentrated food source of RSV found in the human diet. This review topic deals to how efficient is RSV towards alterations during the aging process; obtained from recent data of clinical trials, preclinical studies, and cell culture approach; especially RSV protecting effect on brain aging of elderly; its role on the microglial cells playing a central role in the neuro-inflammation; and in its anti-inflammatory effects on ocular diseases.


Assuntos
Antioxidantes/farmacologia , Dieta Mediterrânea , Envelhecimento Saudável/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Resveratrol/farmacologia , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Resveratrol/administração & dosagem , Resveratrol/metabolismo
20.
Free Radic Res ; 53(sup1): 1163-1170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30668224

RESUMO

A healthy ageing process is important when it is considered that one-third of the population of Europe is already over 50 years old, although there are regional variations. This proportion is likely to increase in the future, and maintenance of vitality at an older age is not only an important measure of the quality of life but also key to participation and productivity. So, the binomial "nutrition and ageing" has different aspects and poses considerable challenges, providing a fertile ground for research and networks. The NutRedOx network will focus on the impact of redox-active compounds in food on healthy ageing, chemoprevention, and redox control in the context of major age-related diseases. The main aim of the NutRedOx network is to gather experts from Europe, and neighbouring countries, and from different disciplines that are involved in the study of biological redox active food components and are relevant to the ageing organism, its health, function, and vulnerability to disease. Together, these experts will form a major and sustainable EU-wide cluster in form of the NutRedOx Centre of Excellence able to address the topic from different perspectives, with the long-term aim to provide a scientific basis for improved nutritional and lifestyle habits, to train the next generation of multidisciplinary researchers in this field, to raise awareness of such habits among the wider population, and also to engage with industry to develop age-adequate foods and medicines.


Assuntos
Redes Comunitárias , Envelhecimento Saudável , Estado Nutricional , Doença , Europa (Continente) , Humanos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA