Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioinform Adv ; 4(1): vbae062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779177

RESUMO

Motivation: Single-cell RNA sequencing (scRNAseq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data. Results: In this article, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly integrates with commonly used single-cell Seurat and SingleCellExperiment R objects, resulting in efficient processing and visualization of varied datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of the complexities inherent in scRNAseq analysis. Availability and implementation: Source code can be downloaded from https://github.com/chernolabs/scX. A docker image is available from dockerhub as chernolabs/scx.

2.
Forensic Sci Int Genet ; 70: 103025, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38382248

RESUMO

Missing person cases typically require a genetic kinship test to determine the relationship between an unidentified individual and the relatives of the missing person. When not enough genetic evidence has been collected the lack of statistical power of these tests might lead to unreliable results. This is particularly true when just a few distant relatives are available for genotyping. In this contribution, we considered a Bayesian network approach for kinship testing and proposed several information theoretic metrics in order to quantitatively evaluate the information content of pedigrees. We show how these statistics are related to the widely used likelihood ratio values and could be employed to efficiently prioritize family members in order to optimize the statistical power in missing person problems. Our methodology seamlessly integrates with Bayesian modeling approaches, like the GENis platform that we have recently developed for high-throughput missing person identification tasks. Furthermore, our approach can also be easily incorporated into Elston-Stewart forensic frameworks. To facilitate the application of our methodology, we have developed the forensIT package, freely available on CRAN repository, which implements all the methodologies described in our manuscript.


Assuntos
Impressões Digitais de DNA , Teoria da Informação , Humanos , Impressões Digitais de DNA/métodos , Funções Verossimilhança , Teorema de Bayes , Linhagem
3.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260428

RESUMO

The adult hippocampus generates new granule cells (aGCs) that exhibit distinct functional capabilities along development, conveying a unique form of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like neural stem cells (RGL) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to follow newborn aGCs along differentiation using single-nuclei RNA sequencing (snRNA-seq). Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple sequential immature stages bearing increasing levels of effector genes supporting growth, excitability and synaptogenesis. Remarkably, four discrete cellular states were defined by the expression of distinct sets of transcription factors (TFs): quiescent neural stem cells, proliferative progenitors, postmitotic immature aGCs, and mature aGCs. The transition from immature to mature aCGs involved a transcriptional switch that shutdown molecular cascades promoting cell growth, such as the SoxC family of TFs, to activate programs controlling neuronal homeostasis. Indeed, aGCs overexpressing Sox4 or Sox11 remained stalled at the immature state. Our results unveil precise molecular mechanisms driving adult neural stem cells through the pathway of neuronal differentiation.

4.
ArXiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37961742

RESUMO

Single-cell RNA sequencing (scRNA-seq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data. In this paper, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly integrates with commonly used single-cell Seurat and Single-CellExperiment R objects, resulting in efficient processing and visualization of varied datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of the complexities inherent in scRNAseq analysis.

5.
PLoS Comput Biol ; 19(10): e1011540, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37831726

RESUMO

In eukaryotic organisms the ensemble of 5' splice site sequences reflects the balance between natural nucleotide variability and minimal molecular constraints necessary to ensure splicing fidelity. This compromise shapes the underlying statistical patterns in the composition of donor splice site sequences. The scope of this study was to mine conserved and divergent signals in the composition of 5' splice site sequences. Because 5' donor sequences are a major cue for proper recognition of splice sites, we reasoned that statistical regularities in their composition could reflect the biological functionality and evolutionary history associated with splicing mechanisms. Results: We considered a regularized maximum entropy modeling framework to mine for non-trivial two-site correlations in donor sequence datasets corresponding to 30 different eukaryotes. For each analyzed species, we identified minimal sets of two-site coupling patterns that were able to replicate, at a given regularization level, the observed one-site and two-site frequencies in donor sequences. By performing a systematic and comparative analysis of 5'splice sites we showed that lineage information could be traced from joint di-nucleotide probabilities. We were able to identify characteristic two-site coupling patterns for plants and animals, and propose that they may echo differences in splicing regulation previously reported between these groups.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Animais , Sítios de Splice de RNA/genética , Sequência de Bases , Splicing de RNA/genética , Plantas/genética , Fungos/genética , Eucariotos , Nucleotídeos , Íntrons
7.
Bioinformatics ; 37(17): 2609-2616, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33677494

RESUMO

MOTIVATION: Genome-wide analysis of alternative splicing has been a very active field of research since the early days of next generation sequencing technologies. Since then, ever-growing data availability and the development of increasingly sophisticated analysis methods have uncovered the complexity of the general splicing repertoire. A large number of splicing analysis methodologies exist, each of them presenting its own strengths and weaknesses. For instance, methods exclusively relying on junction information do not take advantage of the large majority of reads produced in an RNA-seq assay, isoform reconstruction methods might not detect novel intron retention events, some solutions can only handle canonical splicing events, and many existing methods can only perform pairwise comparisons. RESULTS: In this contribution, we present ASpli, a computational suite implemented in R statistical language, that allows the identification of changes in both, annotated and novel alternative-splicing events and can deal with simple, multi-factor or paired experimental designs. Our integrative computational workflow, that considers the same GLM model applied to different sets of reads and junctions, allows computation of complementary splicing signals. Analyzing simulated and real data, we found that the consolidation of these signals resulted in a robust proxy of the occurrence of splicing alterations. While the analysis of junctions allowed us to uncover annotated as well as non-annotated events, read coverage signals notably increased recall capabilities at a very competitive performance when compared against other state-of-the-art splicing analysis algorithms. AVAILABILITY AND IMPLEMENTATION: ASpli is freely available from the Bioconductor project site https://doi.org/doi:10.18129/B9.bioc.ASpli. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

8.
Nucleic Acids Res ; 48(D1): D992-D1005, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31680154

RESUMO

The volume of biological, chemical and functional data deposited in the public domain is growing rapidly, thanks to next generation sequencing and highly-automated screening technologies. These datasets represent invaluable resources for drug discovery, particularly for less studied neglected disease pathogens. To leverage these datasets, smart and intensive data integration is required to guide computational inferences across diverse organisms. The TDR Targets chemogenomics resource integrates genomic data from human pathogens and model organisms along with information on bioactive compounds and their annotated activities. This report highlights the latest updates on the available data and functionality in TDR Targets 6. Based on chemogenomic network models providing links between inhibitors and targets, the database now incorporates network-driven target prioritizations, and novel visualizations of network subgraphs displaying chemical- and target-similarity neighborhoods along with associated target-compound bioactivity links. Available data can be browsed and queried through a new user interface, that allow users to perform prioritizations of protein targets and chemical inhibitors. As such, TDR Targets now facilitates the investigation of drug repurposing against pathogen targets, which can potentially help in identifying candidate targets for bioactive compounds with previously unknown targets. TDR Targets is available at https://tdrtargets.org.


Assuntos
Quimioinformática/métodos , Biologia Computacional/métodos , Bases de Dados Factuais , Descoberta de Drogas/métodos , Genômica/métodos , Software , Reposicionamento de Medicamentos , Genoma , Humanos , Ferramenta de Busca , Design de Software , Interface Usuário-Computador
9.
PLoS One ; 12(6): e0180083, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662096

RESUMO

Ultrasensitive response motifs, capable of converting graded stimuli into binary responses, are well-conserved in signal transduction networks. Although it has been shown that a cascade arrangement of multiple ultrasensitive modules can enhance the system's ultrasensitivity, how a given combination of layers affects a cascade's ultrasensitivity remains an open question for the general case. Here, we introduce a methodology that allows us to determine the presence of sequestration effects and to quantify the relative contribution of each module to the overall cascade's ultrasensitivity. The proposed analysis framework provides a natural link between global and local ultrasensitivity descriptors and it is particularly well-suited to characterize and understand mathematical models used to study real biological systems. As a case study, we have considered three mathematical models introduced by O'Shaughnessy et al. to study a tunable synthetic MAPK cascade, and we show how our methodology can help modelers better understand alternative models.


Assuntos
Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Modelos Estatísticos
10.
Oncotarget ; 7(27): 41154-41171, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27206673

RESUMO

Reactive oxygen species (ROS) are implicated in tumor transformation. The antioxidant system (AOS) protects cells from ROS damage. However, it is also hijacked by cancers cells to proliferate within the tumor. Thus, identifying proteins altered by redox imbalance in cancer cells is an attractive prognostic and therapeutic tool. Gene expression microarrays in A375 melanoma cells with different ROS levels after overexpressing catalase were performed. Dissimilar phenotypes by differential compensation to hydrogen peroxide scavenging were generated. The melanotic A375-A7 (A7) upregulated TYRP1, CNTN1 and UCHL1 promoting melanogenesis. The metastatic A375-G10 (G10) downregulated MTSS1 and TIAM1, proteins absent in metastasis. Moreover, differential coexpression of AOS genes (EPHX2, GSTM3, MGST1, MSRA, TXNRD3, MGST3 and GSR) was found in A7 and G10. Their increase in A7 improved its AOS ability and therefore, oxidative stress response, resembling less aggressive tumor cells. Meanwhile, their decrease in G10 revealed a disruption in the AOS and therefore, enhanced its metastatic capacity.These gene signatures, not only bring new insights into the physiopathology of melanoma, but also could be relevant in clinical prognostic to classify between non aggressive and metastatic melanomas.


Assuntos
Antioxidantes/metabolismo , Catalase/genética , Melanoma Amelanótico/genética , Estresse Oxidativo/genética , Neoplasias Cutâneas/genética , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma Amelanótico/patologia , Análise em Microsséries , Metástase Neoplásica , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/patologia , Transcriptoma , Regulação para Cima/genética
11.
Sci Rep ; 6: 24570, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27080396

RESUMO

Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética
12.
PLoS Negl Trop Dis ; 10(1): e0004300, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26735851

RESUMO

Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.


Assuntos
Antiparasitários/isolamento & purificação , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Doenças Negligenciadas/tratamento farmacológico , Animais , Humanos , Camundongos
13.
Proc Natl Acad Sci U S A ; 112(30): 9382-7, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26170331

RESUMO

The mechanisms by which poikilothermic organisms ensure that biological processes are robust to temperature changes are largely unknown. Temperature compensation, the ability of circadian rhythms to maintain a relatively constant period over the broad range of temperatures resulting from seasonal fluctuations in environmental conditions, is a defining property of circadian networks. Temperature affects the alternative splicing (AS) of several clock genes in fungi, plants, and flies, but the splicing factors that modulate these effects to ensure clock accuracy throughout the year remain to be identified. Here we show that GEMIN2, a spliceosomal small nuclear ribonucleoprotein assembly factor conserved from yeast to humans, modulates low temperature effects on a large subset of pre-mRNA splicing events. In particular, GEMIN2 controls the AS of several clock genes and attenuates the effects of temperature on the circadian period in Arabidopsis thaliana. We conclude that GEMIN2 is a key component of a posttranscriptional regulatory mechanism that ensures the appropriate acclimation of plants to daily and seasonal changes in temperature conditions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas do Complexo SMN/fisiologia , Processamento Alternativo , Sequência de Aminoácidos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Ritmo Circadiano , Análise por Conglomerados , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Teste de Complementação Genética , Estudo de Associação Genômica Ampla , Humanos , Íntrons , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Folhas de Planta/fisiologia , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas do Complexo SMN/genética , Homologia de Sequência de Aminoácidos , Spliceossomos/fisiologia , Temperatura , Transcrição Gênica
14.
Mol Cell Neurosci ; 67: 75-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26051800

RESUMO

Transforming growth factor beta 1 (TGF-beta1), an anti-inflammatory cytokine, has been shown to have pro-neurogenic effects on adult Neural Stem Cells (aNSC) from the dentate gyrus and in vivo models. Here, we expanded the observation of the pro-neurogenic effect of TGF-beta1 on aNSC from the subventricular zone (SVZ) of adult rats and performed a functional genomic analysis to identify candidate genes to mediate its effect. 10 candidate genes were identified by microarray analysis and further validated by qRT-PCR. Of these, Fibulin-2 was increased 477-fold and its inhibition by siRNA blocks TGF-beta1 pro-neurogenic effect. Curiously, Fibulin-2 was not expressed by aNSC but by a GFAP-positive population in the culture, suggesting an indirect mechanism of action. TGF-beta1 also induced Fibulin-2 in the SVZ in vivo. Interestingly, 5 out of the 10 candidate genes identified are known to interact with integrins, paving the way for exploring their functional role in adult neurogenesis. In conclusion, we have identified 10 genes with putative pro-neurogenic effects, 5 of them related to integrins and provided proof that Fibulin-2 is a major mediator of the pro-neurogenic effects of TGF-beta1. These data should contribute to further exploring the molecular mechanism of adult neurogenesis of the genes identified and the involvement of the integrin pathway on adult neurogenesis.


Assuntos
Células-Tronco Adultas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Fator de Crescimento Transformador beta1/farmacologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Integrinas/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta1/metabolismo
15.
PLoS One ; 10(4): e0122477, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25856434

RESUMO

BACKGROUND: Cluster-based descriptions of biological networks have received much attention in recent years fostered by accumulated evidence of the existence of meaningful correlations between topological network clusters and biological functional modules. Several well-performing clustering algorithms exist to infer topological network partitions. However, due to respective technical idiosyncrasies they might produce dissimilar modular decompositions of a given network. In this contribution, we aimed to analyze how alternative modular descriptions could condition the outcome of follow-up network biology analysis. METHODOLOGY: We considered a human protein interaction network and two paradigmatic cluster recognition algorithms, namely: the Clauset-Newman-Moore and the infomap procedures. We analyzed to what extent both methodologies yielded different results in terms of granularity and biological congruency. In addition, taking into account Guimera's cartographic role characterization of network nodes, we explored how the adoption of a given clustering methodology impinged on the ability to highlight relevant network meso-scale connectivity patterns. RESULTS: As a case study we considered a set of aging related proteins and showed that only the high-resolution modular description provided by infomap, could unveil statistically significant associations between them and inter/intra modular cartographic features. Besides reporting novel biological insights that could be gained from the discovered associations, our contribution warns against possible technical concerns that might affect the tools used to mine for interaction patterns in network biology studies. In particular our results suggested that sub-optimal partitions from the strict point of view of their modularity levels might still be worth being analyzed when meso-scale features were to be explored in connection with external source of biological knowledge.


Assuntos
Envelhecimento/genética , Algoritmos , Mineração de Dados/estatística & dados numéricos , Redes Reguladoras de Genes , Mapeamento de Interação de Proteínas , Análise por Conglomerados , Humanos , Mapas de Interação de Proteínas
16.
PLoS Genet ; 11(2): e1004965, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25647511

RESUMO

Wound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the overall steps in wound healing, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process. However, they do allow the less understood aspects of the healing response to be explored, e.g., which signal(s) are responsible for initiating tissue remodeling? How is sealing of the epithelia achieved? Or, what inhibitory cues cancel the healing machinery upon completion? Answering these and other questions first requires the identification and functional analysis of wound specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method that is healing-permissive and that allows live imaging and biochemical analysis of cultured imaginal discs. We performed comparative genome-wide profiling between Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. Sets of potential wound-specific genes were subsequently identified. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in healing assays. This non-saturated analysis defines a relevant set of genes whose changes in expression level are functionally significant for proper tissue repair. Amongst these we identified the TCP1 chaperonin complex as a key regulator of the actin cytoskeleton essential for the wound healing response. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound healing response.


Assuntos
Actinas/genética , Citoesqueleto/genética , Discos Imaginais/metabolismo , Cicatrização/genética , Actinas/metabolismo , Animais , Citoesqueleto/patologia , Drosophila melanogaster , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Regulação da Expressão Gênica , Genoma de Inseto , Humanos , Discos Imaginais/crescimento & desenvolvimento , Discos Imaginais/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Sistema de Sinalização das MAP Quinases/genética , Regeneração/genética , Transdução de Sinais , Tórax/crescimento & desenvolvimento , Tórax/metabolismo , Tórax/patologia
17.
Phys Biol ; 11(6): 066003, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25313165

RESUMO

Much work has been done on the study of the biochemical mechanisms that result in ultrasensitive behavior of simple biochemical modules. However, in a living cell, such modules are embedded in a bigger network that constrains the range of inputs that the module will receive as well as the range of the module's outputs that network will be able to detect. Here, we studied how the effective ultrasensitivity of a modular system is affected by these restrictions. We use a simple setup to explore to what extent the dynamic range spanned by upstream and downstream components of an ultrasensitive module impact on the effective sensitivity of the system. Interestingly, we found for some ultrasensitive motifs that dynamic range limitations imposed by downstream components can produce effective sensitivities much larger than that of the original module when considered in isolation.


Assuntos
Modelos Biológicos , Transdução de Sinais , Cinética
18.
Proc Natl Acad Sci U S A ; 111(42): 15166-71, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288739

RESUMO

Growing evidence suggests that core spliceosomal components differentially affect RNA processing of specific genes; however, whether changes in the levels or activities of these factors control specific signaling pathways is largely unknown. Here we show that some SM-like (LSM) genes, which encode core components of the spliceosomal U6 small nuclear ribonucleoprotein complex, regulate circadian rhythms in plants and mammals. We found that the circadian clock regulates the expression of LSM5 in Arabidopsis plants and several LSM genes in mouse suprachiasmatic nucleus. Further, mutations in LSM5 or LSM4 in Arabidopsis, or down-regulation of LSM3, LSM5, or LSM7 expression in human cells, lengthens the circadian period. Although we identified changes in the expression and alternative splicing of some core clock genes in Arabidopsis lsm5 mutants, the precise molecular mechanism causing period lengthening remains to be identified. Genome-wide expression analysis of either a weak lsm5 or a strong lsm4 mutant allele in Arabidopsis revealed larger effects on alternative splicing than on constitutive splicing. Remarkably, large splicing defects were not observed in most of the introns evaluated using RNA-seq in the strong lsm4 mutant allele used in this study. These findings support the idea that some LSM genes play both regulatory and constitutive roles in RNA processing, contributing to the fine-tuning of specific signaling pathways.


Assuntos
Proteínas de Arabidopsis/fisiologia , Ritmo Circadiano , Proteínas de Ligação a RNA/fisiologia , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Alelos , Processamento Alternativo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica de Plantas , Genômica , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Análise de Sequência de RNA , Transdução de Sinais , Spliceossomos/metabolismo , Núcleo Supraquiasmático/metabolismo
19.
Proc Natl Acad Sci U S A ; 111(37): E3860-9, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25172920

RESUMO

Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general "systems level" mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step.


Assuntos
Espaço Extracelular/metabolismo , Receptores de Superfície Celular/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Polaridade Celular , Cinética , Ligantes , Modelos Biológicos , Ligação Proteica , Fatores de Tempo
20.
Proc Natl Acad Sci U S A ; 110(29): 12120-5, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818596

RESUMO

Light signaling pathways and the circadian clock interact to help organisms synchronize physiological and developmental processes with periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Here we describe a family of night light-inducible and clock-regulated genes (LNK) that play a key role linking light regulation of gene expression to the control of daily and seasonal rhythms in Arabidopsis thaliana. A genomewide transcriptome analysis revealed that most light-induced genes respond more strongly to light during the subjective day, which is consistent with the diurnal nature of most physiological processes in plants. However, a handful of genes, including the homologous genes LNK1 and LNK2, are more strongly induced by light in the middle of the night, when the clock is most responsive to this signal. Further analysis revealed that the morning phased LNK1 and LNK2 genes control circadian rhythms, photomorphogenic responses, and photoperiodic dependent flowering, most likely by regulating a subset of clock and flowering time genes in the afternoon. LNK1 and LNK2 themselves are directly repressed by members of the TIMING OF CAB1 EXPRESSION/PSEUDO RESPONSE REGULATOR family of core-clock genes in the afternoon and early night. Thus, LNK1 and LNK2 integrate early light signals with temporal information provided by core oscillator components to control the expression of afternoon genes, allowing plants to keep track of seasonal changes in day length.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinal Luminoso/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunoprecipitação da Cromatina , Relógios Circadianos/genética , Primers do DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Transdução de Sinal Luminoso/genética , Análise em Microsséries , Fotoperíodo , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA