Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 40(6): 583-594.e6, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28350990

RESUMO

Mitochondrial fission mediated by the GTPase dynamin-related protein 1 (Drp1) is an attractive drug target in numerous maladies that range from heart disease to neurodegenerative disorders. The compound mdivi-1 is widely reported to inhibit Drp1-dependent fission, elongate mitochondria, and mitigate brain injury. Here, we show that mdivi-1 reversibly inhibits mitochondrial complex I-dependent O2 consumption and reverse electron transfer-mediated reactive oxygen species (ROS) production at concentrations (e.g., 50 µM) used to target mitochondrial fission. Respiratory inhibition is rescued by bypassing complex I using yeast NADH dehydrogenase Ndi1. Unexpectedly, respiratory impairment by mdivi-1 occurs without mitochondrial elongation, is not mimicked by Drp1 deletion, and is observed in Drp1-deficient fibroblasts. In addition, mdivi-1 poorly inhibits recombinant Drp1 GTPase activity (Ki > 1.2 mM). Overall, these results suggest that mdivi-1 is not a specific Drp1 inhibitor. The ability of mdivi-1 to reversibly inhibit complex I and modify mitochondrial ROS production may contribute to effects observed in disease models.


Assuntos
Dinaminas/antagonistas & inibidores , Complexo I de Transporte de Elétrons/antagonistas & inibidores , GTP Fosfo-Hidrolases/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Quinazolinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Células COS , Respiração Celular/efeitos dos fármacos , Chlorocebus aethiops , Dinaminas/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , GTP Fosfo-Hidrolases/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , NAD/metabolismo , Neurônios/metabolismo , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos Sprague-Dawley , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Biol Cell ; 28(3): 396-410, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932492

RESUMO

MARCH5, an OMM-associated E3 ubiquitin ligase, controls mitochondrial function. Despite its importance, the mechanism and factors controlling MARCH5 activity are largely unknown. Here we report that the MARCH5 C-terminal domain plays a critical role in degradation of MARCH5 substrates, likely by facilitating release of ubiquitinated proteins from the OMM. We also found that the mitochondrial fission proteins Drp1 and Mff negatively regulate MARCH5's activity toward MiD49 and Mcl1. Knockouts of either Drp1 or Mff led to reduced expression, shorter half-lives, and increased ubiquitination of MiD49 and Mcl1. Effects of Mff and Drp1 depletion on degradation rates and ubiquitination of Mcl1 and MiD49 were eliminated in Drp1-/-/MARCH5-/- and Mff-/-/MARCH5-/- cells. Our data show that it is not mitochondrial morphology per se but rather Mff and Drp1 that directly control MARCH5. Consistently, we find that Mff is an integral component of the MARCH5/p97/Npl4 complex, which is also controlled by MARCH5's C-terminal domain. Furthermore, not only mitochondrial fission but also fusion is regulated through Mff and Drp1 protein activities. Thus, in addition to their canonical roles in mitochondrial fission, Mff and Drp1 also act as regulatory factors that control mitochondrial fission and fusion.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Dinâmica Mitocondrial/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Técnicas de Cultura de Células , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/fisiologia , Células HCT116 , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/fisiologia , Ubiquitinação
3.
Cell Death Discov ; 2: 16082, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28028439

RESUMO

N-Myc is a global transcription factor that regulates the expression of genes involved in a number of essential cellular processes including: ribosome biogenesis, cell cycle and apoptosis. Upon deregulation, N-Myc can drive pathologic expression of many of these genes, which ultimately defines its oncogenic potential. Overexpression of N-Myc has been demonstrated to contribute to tumorigenesis, most notably for the pediatric tumor, neuroblastoma. Herein, we provide evidence that deregulated N-Myc alters the expression of proteins involved in mitochondrial dynamics. We found that N-Myc overexpression leads to increased fusion of the mitochondrial reticulum secondary to changes in protein expression due to aberrant transcriptional and post-translational regulation. We believe the structural changes in the mitochondrial network in response to N-Myc amplification in neuroblastoma contributes to two important aspects of tumor development and maintenance-bioenergetic alterations and apoptotic resistance. Specifically, we found that N-Myc overexpressing cells are resistant to programmed cell death in response to exposure to low doses of cisplatin, and demonstrated that this was dependent on increased mitochondrial fusion. We speculate that these changes in mitochondrial structure and function may contribute significantly to the aggressive clinical ph9enotype of N-Myc amplified neuroblastoma.

4.
Mol Biol Cell ; 27(2): 349-59, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26564796

RESUMO

Ubiquitin- and proteasome-dependent outer mitochondrial membrane (OMM)-associated degradation (OMMAD) is critical for mitochondrial and cellular homeostasis. However, the scope and molecular mechanisms of the OMMAD pathways are still not well understood. We report that the OMM-associated E3 ubiquitin ligase MARCH5 controls dynamin-related protein 1 (Drp1)-dependent mitochondrial fission and cell sensitivity to stress-induced apoptosis. MARCH5 knockout selectively inhibited ubiquitination and proteasomal degradation of MiD49, a mitochondrial receptor of Drp1, and consequently led to mitochondrial fragmentation. Mitochondrial fragmentation in MARCH5(-/-) cells was not associated with inhibition of mitochondrial fusion or bioenergetic defects, supporting the possibility that MARCH5 is a negative regulator of mitochondrial fission. Both MARCH5 re-expression and MiD49 knockout in MARCH5(-/-) cells reversed mitochondrial fragmentation and reduced sensitivity to stress-induced apoptosis. These findings and data showing MARCH5-dependent degradation of MiD49 upon stress support the possibility that MARCH5 regulation of MiD49 is a novel mechanism controlling mitochondrial fission and, consequently, the cellular response to stress.


Assuntos
Proteínas de Membrana/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Apoptose/fisiologia , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , Células HCT116 , Células HeLa , Homeostase , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Estresse Fisiológico/fisiologia , Ubiquitinação
5.
PLoS One ; 7(5): e37699, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629444

RESUMO

Although the c-Myc (Myc) oncoprotein controls mitochondrial biogenesis and multiple enzymes involved in oxidative phosphorylation (OXPHOS), the coordination of these events and the mechanistic underpinnings of their regulation remain largely unexplored. We show here that re-expression of Myc in myc-/- fibroblasts is accompanied by a gradual accumulation of mitochondrial biomass and by increases in membrane polarization and mitochondrial fusion. A correction of OXPHOS deficiency is also seen, although structural abnormalities in electron transport chain complexes (ETC) are not entirely normalized. Conversely, the down-regulation of Myc leads to a gradual decrease in mitochondrial mass and a more rapid loss of fusion and membrane potential. Increases in the levels of proteins specifically involved in mitochondrial fission and fusion support the idea that Myc affects mitochondrial mass by influencing both of these processes, albeit favoring the latter. The ETC defects that persist following Myc restoration may represent metabolic adaptations, as mitochondrial function is re-directed away from producing ATP to providing a source of metabolic precursors demanded by the transformed cell.


Assuntos
DNA Mitocondrial/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular , DNA Mitocondrial/genética , Regulação para Baixo , Mitocôndrias/genética , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-myc/genética , Ratos
6.
Diabetes ; 59(8): 1926-36, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20668294

RESUMO

OBJECTIVE: Most knowledge on human beta-cell cycle control derives from immunoblots of whole human islets, mixtures of beta-cells and non-beta-cells. We explored the presence, subcellular localization, and function of five early G1/S phase molecules-cyclins D1-3 and cdk 4 and 6-in the adult human beta-cell. RESEARCH DESIGN AND METHODS: Immunocytochemistry for the five molecules and their relative abilities to drive human beta-cell replication were examined. Human beta-cell replication, cell death, and islet function in vivo were studied in the diabetic NOD-SCID mouse. RESULTS: Human beta-cells contain easily detectable cdks 4 and 6 and cyclin D3 but variable cyclin D1. Cyclin D2 was only marginally detectable. All five were principally cytoplasmic, not nuclear. Overexpression of the five, alone or in combination, led to variable increases in human beta-cell replication, with the cdk6/cyclin D3 combination being the most robust (15% versus 0.3% in control beta-cells). A single molecule, cdk6, proved to be capable of driving human beta-cell replication in vitro and enhancing human islet engraftment/proliferation in vivo, superior to normal islets and as effectively as the combination of cdk6 plus a D-cyclin. CONCLUSIONS: Human beta-cells contain abundant cdk4, cdk6, and cyclin D3, but variable amounts of cyclin D1. In contrast to rodent beta-cells, they contain little or no detectable cyclin D2. They are primarily cytoplasmic and likely ineffective in basal beta-cell replication. Unexpectedly, cyclin D3 and cdk6 overexpression drives human beta-cell replication most effectively. Most importantly, a single molecule, cdk6, supports robust human beta-cell proliferation and function in vivo.


Assuntos
Ciclina D/fisiologia , Quinase 6 Dependente de Ciclina/genética , Células Secretoras de Insulina/fisiologia , Células Secretoras de Insulina/transplante , Adulto , Animais , Western Blotting , Divisão Celular , Ciclina D1/fisiologia , Ciclina D2/fisiologia , Ciclina D3/fisiologia , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/fisiologia , Fase G1/fisiologia , Humanos , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Camundongos , Fase S , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA