Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(2): 112126, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795561

RESUMO

To disseminate through the body, Zika virus (ZIKV) is thought to exploit the mobility of myeloid cells, in particular monocytes and dendritic cells. However, the timing and mechanisms underlying shuttling of the virus by immune cells remains unclear. To understand the early steps in ZIKV transit from the skin, at different time points, we spatially mapped ZIKV infection in lymph nodes (LNs), an intermediary site en route to the blood. Contrary to prevailing hypotheses, migratory immune cells are not required for the virus to reach the LNs or blood. Instead, ZIKV rapidly infects a subset of sessile CD169+ macrophages in the LNs, which release the virus to infect downstream LNs. Infection of CD169+ macrophages alone is sufficient to initiate viremia. Overall, our experiments indicate that macrophages that reside in the LNs contribute to initial ZIKV spread. These studies enhance our understanding of ZIKV dissemination and identify another anatomical site for potential antiviral intervention.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Macrófagos , Monócitos/patologia , Linfonodos/patologia
2.
Cell Host Microbe ; 30(3): 357-372.e11, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35182467

RESUMO

The induction of interferon (IFN)-stimulated genes by STATs is a critical host defense mechanism against virus infection. Here, we report that a highly expressed poxvirus protein, 018, inhibits IFN-induced signaling by binding to the SH2 domain of STAT1, thereby preventing the association of STAT1 with an activated IFN receptor. Despite encoding other inhibitors of IFN-induced signaling, a poxvirus mutant lacking 018 was attenuated in mice. The 2.0 Å crystal structure of the 018:STAT1 complex reveals a phosphotyrosine-independent mode of 018 binding to the SH2 domain of STAT1. Moreover, the STAT1-binding motif of 018 shows similarity to the STAT1-binding proteins from Nipah virus, which, similar to 018, block the association of STAT1 with an IFN receptor. Overall, these results uncover a conserved mechanism of STAT1 antagonism that is employed independently by distinct virus families.


Assuntos
Poxviridae , Animais , Interferons/metabolismo , Camundongos , Poxviridae/metabolismo , Fator de Transcrição STAT1/genética , Transdução de Sinais
3.
STAR Protoc ; 2(4): 100790, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34622218

RESUMO

The oral mucosa is an important site for virus infection and transmission, yet few animal models exist to examine the virology, pathology, and immunology of acute oral mucosal viral infection. Here, we provide a protocol for infecting and imaging the inner lip (labial mucosa) of mice with the poxvirus vaccinia virus (VACV). Inoculation of the labial mucosa with a bifurcated needle results in viral replication and priming of an adaptive antiviral response that can be imaged using intravital microscopy. For complete details on the use and execution of this protocol, please refer to Shannon et al. (2021).


Assuntos
Antivirais/farmacologia , Modelos Animais de Doenças , Mucosa Bucal , Infecções por Poxviridae , Vaccinia virus/efeitos dos fármacos , Animais , Feminino , Camundongos , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/imunologia , Mucosa Bucal/virologia , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/virologia
4.
Immunity ; 54(2): 276-290.e5, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33434494

RESUMO

The oropharyngeal mucosa serves as a perpetual pathogen entry point and a critical site for viral replication and spread. Here, we demonstrate that type 1 innate lymphoid cells (ILC1s) were the major immune force providing early protection during acute oral mucosal viral infection. Using intravital microscopy, we show that ILC1s populated and patrolled the uninfected labial mucosa. ILC1s produced interferon-γ (IFN-γ) in the absence of infection, leading to the upregulation of key antiviral genes, which were downregulated in uninfected animals upon genetic ablation of ILC1s or antibody-based neutralization of IFN-γ. Thus, tonic IFN-γ production generates increased oral mucosal viral resistance even before infection. Our results demonstrate barrier-tissue protection through tissue surveillance in the absence of rearranged-antigen receptors and the induction of an antiviral state during homeostasis. This aspect of ILC1 biology raises the possibility that these cells do not share true functional redundancy with other tissue-resident lymphocytes.


Assuntos
Interferon gama/metabolismo , Linfócitos/imunologia , Orofaringe/imunologia , Mucosa Respiratória/imunologia , Vaccinia virus/fisiologia , Vacínia/imunologia , Animais , Células Cultivadas , Resistência à Doença , Humanos , Imunidade Inata , Interferon gama/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas com Domínio T/genética , Células Th1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA