Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 13(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37759841

RESUMO

This Special Issue, "GABA Signaling: Therapeutic Targets for Neurodegenerative and Neurodevelopmental Disorders", focuses on a fundamental property of the neurotransmitter γ-aminobutyric acid (GABA), namely its capacity to shift, in particular conditions, from the hyperpolarizing to the depolarizing direction [...].

2.
Front Cell Neurosci ; 17: 1213732, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396923

RESUMO

Epilepsy is a neurological disorder characterized by recurrent seizures, which result from excessive, synchronous discharges of neurons in different brain areas. In about 30% of cases, epileptic discharges, which vary in their etiology and symptomatology, are difficult to treat with conventional drugs. Ferroptosis is a newly defined iron-dependent programmed cell death, characterized by excessive accumulation of lipid peroxides and reactive oxygen species. Evidence has been provided that ferroptosis is involved in epilepsy, and in particular in those forms resistant to drugs. Here, whole cell patch clamp recordings, in current and voltage clamp configurations, were performed from layer IV principal neurons in cortical slices obtained from adult mouse brain. Application of the ferroptosis inducer RAS-selective lethal 3 (RSL3) induced interictal epileptiform discharges which started at RSL3 concentrations of 2 µM and reached a plateau at 10 µM. This effect was not due to changes in active or passive membrane properties of the cells, but relied on alterations in synaptic transmission. In particular, interictal discharges were dependent on the excessive excitatory drive to layer IV principal cells, as suggested by the increase in frequency and amplitude of spontaneously occurring excitatory glutamatergic currents, possibly dependent on the reduction of inhibitory GABAergic ones. This led to an excitatory/inhibitory unbalance in cortical circuits. Interictal bursts could be prevented or reduced in frequency by the lipophilic antioxidant Vitamin E (30 µM). This study allows identifying new targets of ferroptosis-mediated epileptic discharges opening new avenues for the treatment of drug-resistant forms of epilepsy.

3.
Elife ; 122023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462671

RESUMO

Oscillations occurring simultaneously in a given area represent a physiological unit of brain states. They allow for temporal segmentation of spikes and support distinct behaviors. To establish how multiple oscillatory components co-vary simultaneously and influence neuronal firing during sleep and wakefulness in mice, we describe a multivariate analytical framework for constructing the state space of hippocampal oscillations. Examining the co-occurrence patterns of oscillations on the state space, across species, uncovered the presence of network constraints and distinct set of cross-frequency interactions during wakefulness compared to sleep. We demonstrated how the state space can be used as a canvas to map the neural firing and found that distinct neurons during navigation were tuned to different sets of simultaneously occurring oscillations during sleep. This multivariate analytical framework provides a window to move beyond classical bivariate pipelines for investigating oscillations and neuronal firing, thereby allowing to factor-in the complexity of oscillation-population interactions.


Assuntos
Hipocampo , Sono , Camundongos , Animais , Hipocampo/fisiologia , Sono/fisiologia , Neurônios/fisiologia , Encéfalo
4.
iScience ; 26(1): 105728, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36582822

RESUMO

In Neurodevelopmental Disorders, alterations of synaptic plasticity may trigger structural changes in neuronal circuits involved in cognitive functions. This hypothesis was tested in mice carrying the human R451C mutation of Nlgn3 gene (NLG3R451C KI), found in some families with autistic children. To this aim, the spike time dependent plasticity (STDP) protocol was applied to immature GABAergic Mossy Fibers (MF)-CA3 connections in hippocampal slices from NLG3R451C KI mice. These animals failed to exhibit STD-LTP, an effect that persisted in adulthood when these synapses became glutamatergic. Similar results were obtained in mice lacking the Nlgn3 gene (NLG3 KO mice), suggesting a loss of function. The loss of STD-LTP was associated with a premature shift of GABA from the depolarizing to the hyperpolarizing direction, a reduced BDNF availability and TrkB phosphorylation at potentiated synapses. These effects may constitute a general mechanism underlying cognitive deficits in those forms of Autism caused by synaptic dysfunctions.

6.
Brain Sci ; 12(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35741668

RESUMO

GABA, the main inhibitory neurotransmitter in the adult brain, depolarizes and excites immature neurons because of an initially higher intracellular chloride concentration [Cl-]i due to the delayed expression of the chloride exporter KCC2 at birth. Depolarization-induced calcium rise via NMDA receptors and voltage-dependent calcium channels is instrumental in shaping neuronal circuits and in controlling the excitatory (E)/inhibitory (I) balance in selective brain areas. An E/I imbalance accounts for cognitive impairment observed in several neuropsychiatric disorders. The aim of this review is to summarize recent data on the mechanisms by which alterations of GABAergic signaling alter the E/I balance in cortical and hippocampal neurons in Alzheimer's disease (AD) and the role of cation-chloride co-transporters in this process. In particular, we discuss the NGF and AD relationship and how mice engineered to express recombinant neutralizing anti-NGF antibodies (AD11 mice), which develop a neurodegenerative pathology reminiscent of that observed in AD patients, exhibit a depolarizing action of GABA due to KCC2 impairment. Treating AD and other forms of dementia with bumetanide, a selective KCC2 antagonist, contributes to re-establishing a proper E/I balance in selective brain areas, leading to amelioration of AD symptoms and the slowing down of disease progression.

7.
Cells ; 11(3)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159205

RESUMO

GABA depolarizes and often excites immature neurons in all animal species and brain structures investigated due to a developmentally regulated reduction in intracellular chloride concentration ([Cl-]i) levels. The control of [Cl-]i levels is mediated by the chloride cotransporters NKCC1 and KCC2, the former usually importing chloride and the latter exporting it. The GABA polarity shift has been extensively validated in several experimental conditions using often the NKCC1 chloride importer antagonist bumetanide. In spite of an intrinsic heterogeneity, this shift is abolished in many experimental conditions associated with developmental disorders including autism, Rett syndrome, fragile X syndrome, or maternal immune activation. Using bumetanide, an EMA- and FDA-approved agent, many clinical trials have shown promising results with the expected side effects. Kaila et al. have repeatedly challenged these experimental and clinical observations. Here, we reply to the recent reviews by Kaila et al. stressing that the GABA polarity shift is solidly accepted by the scientific community as a major discovery to understand brain development and that bumetanide has shown promising effects in clinical trials.


Assuntos
Transtorno Autístico , Bumetanida , Animais , Encéfalo , Bumetanida/farmacologia , Bumetanida/uso terapêutico , Cloretos , Ácido gama-Aminobutírico
8.
Can J Physiol Pharmacol ; 100(1): 1-4, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34767471

RESUMO

After over seven decades of neuroscience research, it is now well established that γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. In this paper dedicated to Kresimir Krnjevic (1927-2021), a pioneer and leader in neuroscience, we briefly highlight the fundamental contributions he made in identifying GABA as an inhibitory neurotransmitter in the brain and our personal interactions with him. Of note, between 1972 and 1978 Dr. Krnjevic was a highly reputed Chief Editor of the Canadian Journal of Physiology and Pharmacology.


Assuntos
Neurociências/história , Neurotransmissores , Farmacologia/história , Fisiologia/história , Ácido gama-Aminobutírico/fisiologia , Canadá , História do Século XX , História do Século XXI , Humanos , Masculino , Publicações Periódicas como Assunto , Sociedades Científicas/organização & administração
9.
Elife ; 102021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34696824

RESUMO

Acetylcholine (ACh), released in the hippocampus from fibers originating in the medial septum/diagonal band of Broca (MSDB) complex, is crucial for learning and memory. The CA2 region of the hippocampus has received increasing attention in the context of social memory. However, the contribution of ACh to this process remains unclear. Here, we show that in mice, ACh controls social memory. Specifically, MSDB cholinergic neurons inhibition impairs social novelty discrimination, meaning the propensity of a mouse to interact with a novel rather than a familiar conspecific. This effect is mimicked by a selective antagonist of nicotinic AChRs delivered in CA2. Ex vivo recordings from hippocampal slices provide insight into the underlying mechanism, as activation of nAChRs by nicotine increases the excitatory drive to CA2 principal cells via disinhibition. In line with this observation, optogenetic activation of cholinergic neurons in MSDB increases the firing of CA2 principal cells in vivo. These results point to nAChRs as essential players in social novelty discrimination by controlling inhibition in the CA2 region.


Assuntos
Antipsicóticos/farmacologia , Região CA2 Hipocampal/fisiologia , Neurônios Colinérgicos/fisiologia , Clozapina/análogos & derivados , Comportamento Exploratório/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Interação Social/efeitos dos fármacos , Animais , Região CA2 Hipocampal/efeitos dos fármacos , Clozapina/farmacologia , Feixe Diagonal de Broca/efeitos dos fármacos , Feixe Diagonal de Broca/metabolismo , Masculino , Camundongos , Comportamento Social
10.
Front Cell Neurosci ; 15: 813441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069119

RESUMO

The construction of the brain relies on a series of well-defined genetically and experience- or activity -dependent mechanisms which allow to adapt to the external environment. Disruption of these processes leads to neurological and psychiatric disorders, which in many cases are manifest already early in postnatal life. GABA, the main inhibitory neurotransmitter in the adult brain is one of the major players in the early assembly and formation of neuronal circuits. In the prenatal and immediate postnatal period GABA, acting on GABAA receptors, depolarizes and excites targeted cells via an outwardly directed flux of chloride. In this way it activates NMDA receptors and voltage-dependent calcium channels contributing, through intracellular calcium rise, to shape neuronal activity and to establish, through the formation of new synapses and elimination of others, adult neuronal circuits. The direction of GABAA-mediated neurotransmission (depolarizing or hyperpolarizing) depends on the intracellular levels of chloride [Cl-]i, which in turn are maintained by the activity of the cation-chloride importer and exporter KCC2 and NKCC1, respectively. Thus, the premature hyperpolarizing action of GABA or its persistent depolarizing effect beyond the postnatal period, leads to behavioral deficits associated with morphological alterations and an excitatory (E)/inhibitory (I) imbalance in selective brain areas. The aim of this review is to summarize recent data concerning the functional role of GABAergic transmission in building up and refining neuronal circuits early in development and its dysfunction in neurodevelopmental disorders such as Autism Spectrum Disorders (ASDs), schizophrenia and epilepsy. In particular, we focus on novel information concerning the mechanisms by which alterations in cation-chloride co-transporters (CCC) generate behavioral and cognitive impairment in these diseases. We discuss also the possibility to re-establish a proper GABAA-mediated neurotransmission and excitatory (E)/inhibitory (I) balance within selective brain areas acting on CCC.

11.
Front Cell Neurosci ; 14: 173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612513

RESUMO

GABAergic transmission regulates neuronal excitability, dendritic integration of synaptic signals and oscillatory activity, thought to be involved in high cognitive functions. By anchoring synaptic receptors just opposite to release sites, the scaffold protein gephyrin plays a key role in these tasks. In addition, by regulating GABAA receptor trafficking, gephyrin contributes to maintain, at the network level, an appropriate balance between Excitation (E) and Inhibition (I), crucial for information processing. An E/I imbalance leads to neuropsychiatric disorders such as epilepsy, schizophrenia and autism. In this article, we exploit a previously published computational method to fit spontaneous synaptic events, using a simplified model of the subcellular pathways involving gephyrin at inhibitory synapses. The model was used to analyze experimental data recorded under different conditions, with the main goal to gain insights on the possible consequences of gephyrin block on IPSCs. The same approach can be useful, in general, to analyze experiments designed to block a single protein. The results suggested possible ways to correlate the changes observed in the amplitude and time course of individual events recorded after different experimental protocols with the changes that may occur in the main subcellular pathways involved in gephyrin-dependent transsynaptic signaling.

12.
iScience ; 23(5): 101078, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32361506

RESUMO

Early in brain development, impaired neuronal signaling during time-sensitive windows triggers the onset of neurodevelopmental disorders. GABA, through its depolarizing and excitatory actions, drives early developmental events including neuronal circuit formation and refinement. BDNF/TrkB signaling cooperates with GABA actions. How these developmental processes influence the formation of neural circuits and affect adult brain function is unknown. Here, we show that early deletion of Ntrk2/Trkb from immature mouse hippocampal dentate granule cells (DGCs) affects the integration and maturation of newly formed DGCs in the hippocampal circuitry and drives a premature shift from depolarizing to hyperpolarizing GABAergic actions in the target of DGCs, the CA3 principal cells of the hippocampus, by reducing the expression of the cation-chloride importer Nkcc1. These changes lead to the disruption of early synchronized neuronal activity at the network level and impaired morphological maturation of CA3 pyramidal neurons, ultimately contributing to altered adult hippocampal synaptic plasticity and cognitive processes.

13.
Neuroscience ; 439: 125-136, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31356900

RESUMO

To be highly reliable, synaptic transmission needs postsynaptic receptors (Rs) in precise apposition to the presynaptic release sites. At inhibitory synapses, the postsynaptic protein gephyrin self-assembles to form a scaffold that anchors glycine and GABAARs to the cytoskeleton, thus ensuring the accurate accumulation of postsynaptic receptors at the right place. This protein undergoes several post-translational modifications which control protein-protein interaction and downstream signaling pathways. In addition, through the constant exchange of scaffolding elements and receptors in and out of synapses, gephyrin dynamically regulates synaptic strength and plasticity. The aim of the present review is to highlight recent findings on the functional role of gephyrin at GABAergic inhibitory synapses. We will discuss different approaches used to interfere with gephyrin in order to unveil its function. In addition, we will focus on the impact of gephyrin structure and distribution at the nanoscale level on the functional properties of inhibitory synapses as well as the implications of this scaffold protein in synaptic plasticity processes. Finally, we will emphasize how gephyrin genetic mutations or alterations in protein expression levels are implicated in several neuropathological disorders, including autism spectrum disorders, schizophrenia, temporal lobe epilepsy and Alzheimer's disease, all associated with severe deficits of GABAergic signaling. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.


Assuntos
Proteínas de Membrana , Sinapses , Proteínas de Transporte , Humanos , Proteínas de Membrana/metabolismo , Receptores de GABA-A , Sinapses/metabolismo
14.
Front Psychiatry ; 10: 513, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379628

RESUMO

Autism spectrum disorders (ASDs) comprise a heterogeneous group of neuro-developmental abnormalities with a strong genetic component, characterized by deficits in verbal and non-verbal communication, impaired social interactions, and stereotyped behaviors. In a small percentage of cases, ASDs are associated with alterations of genes involved in synaptic function. Among these, relatively frequent are mutations/deletions of genes encoding for neuroligins (NLGs). NLGs are postsynaptic adhesion molecules that, interacting with their presynaptic partners neurexins, ensure the cross talk between pre- and postsynaptic specializations and synaptic stabilization, a condition needed for maintaining a proper excitatory/inhibitory balance within local neuronal circuits. We have focused on mice lacking NLG3 (NLG3 knock-out mice), animal models of a non-syndromic form of autism, which exhibit deficits in social behavior reminiscent of those found in ASDs. Among different brain areas involved in social cognition, the CA2 region of the hippocampus has recently emerged as a central structure for social memory processing. Here, in vivo recordings from anesthetized animals and ex vivo recordings from hippocampal slices have been used to assess the dynamics of neuronal signaling in the CA2 hippocampal area. In vivo experiments from NLG3-deficient mice revealed a selective impairment of spike-related slow wave activity in the CA2 area and a significant reduction in oscillatory activity in the theta and gamma frequencies range in both CA2 and CA3 regions of the hippocampus. These network effects were associated with an increased neuronal excitability in the CA2 hippocampal area. Ex vivo recordings from CA2 principal cells in slices obtained from NLG3 knock-out animals unveiled a strong excitatory/inhibitory imbalance in this region accompanied by a strong reduction of perisomatic inhibition mediated by CCK-containing GABAergic interneurons. These data clearly suggest that the selective alterations in network dynamics and GABAergic signaling observed in the CA2 hippocampal region of NLG3 knock-out mice may account for deficits in social memory reminiscent of those observed in autistic patients.

15.
Front Cell Neurosci ; 11: 255, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878628

RESUMO

Synchronized neuronal activity occurring at different developmental stages in various brain structures represents a hallmark of developmental circuits. This activity, which differs in its specific patterns among animal species may play a crucial role in de novo formation and in shaping neuronal networks. In the rodent hippocampus in vitro, the so-called giant depolarizing potentials (GDPs) constitute a primordial form of neuronal synchrony preceding more organized forms of activity such as oscillations in the theta and gamma frequency range. GDPs are generated at the network level by the interaction of the neurotransmitters glutamate and GABA which, immediately after birth, exert both a depolarizing and excitatory action on their targets. GDPs are triggered by GABAergic interneurons, which in virtue of their extensive axonal branching operate as functional hubs to synchronize large ensembles of cells. Intrinsic bursting activity, driven by a persistent sodium conductance and facilitated by the low expression of Kv7.2 and Kv7.3 channel subunits, responsible for IM, exerts a permissive role in GDP generation. Here, we discuss how GDPs are generated in a probabilistic way when neuronal excitability within a local circuit reaches a certain threshold and how GDP-associated calcium transients act as coincident detectors for enhancing synaptic strength at emerging GABAergic and glutamatergic synapses. We discuss the possible in vivo correlate of this activity. Finally, we debate recent data showing how, in several animal models of neuropsychiatric disorders including autism, a GDPs dysfunction is associated to morphological alterations of neuronal circuits and behavioral deficits reminiscent of those observed in patients.

17.
Sci Rep ; 6: 31696, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27526668

RESUMO

Coherent network oscillations (GDPs), generated in the immature hippocampus by the synergistic action of GABA and glutamate, both depolarizing and excitatory, play a key role in the construction of neuronal circuits. In particular, GDPs-associated calcium transients act as coincident detectors for enhancing synaptic efficacy at emerging GABAergic and glutamatergic synapses. Here, we show that, immediately after birth, in the CA3 hippocampal region of the BTBR T+tf/J mouse, an animal model of idiopathic autism, GDPs are severely impaired. This effect was associated with an increased GABAergic neurotransmission and a reduced neuronal excitability. In spite its depolarizing action on CA3 pyramidal cells (in single channel experiments EGABA was positive to Em), GABA exerted at the network level an inhibitory effect as demonstrated by isoguvacine-induced reduction of neuronal firing. We implemented a computational model in which experimental findings could be interpreted as the result of two competing effects: a reduction of the intrinsic excitability of CA3 principal cells and a reduction of the shunting activity in GABAergic interneurons projecting to principal cells. It is therefore likely that premature changes in neuronal excitability within selective hippocampal circuits of BTBR mice lead to GDPs dysfunction and behavioral deficits reminiscent of those found in autistic patients.


Assuntos
Transtorno Autístico/fisiopatologia , Região CA3 Hipocampal/fisiologia , Neurônios/fisiologia , Potenciais de Ação , Animais , Animais Recém-Nascidos , Comportamento Animal , Região CA3 Hipocampal/metabolismo , Camundongos , Camundongos Transgênicos , Ácido gama-Aminobutírico/metabolismo
18.
Front Neuroinform ; 10: 23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445784

RESUMO

Computational modeling of brain circuits requires the definition of many parameters that are difficult to determine from experimental findings. One way to help interpret these data is to fit them using a particular kinetic model. In this paper, we propose a general procedure to fit individual synaptic events recorded from voltage clamp experiments. Starting from any given model description (mod file) in the NEURON simulation environment, the procedure exploits user-defined constraints, dependencies, and rules for the parameters of the model to fit the time course of individual spontaneous synaptic events that are recorded experimentally. The procedure, implemented in NEURON, is currently available in ModelDB. A Python version is installed, and will be soon available for public use, as a standalone task in the Collaboratory Portal of the Human Brain Project. To illustrate the potential application of the procedure, we tested its use with various sets of experimental data on GABAergic synapses; gephyrin and gephyrin-dependent pathways were chosen as a suitable example of a kinetic model of synaptic transmission. For individual spontaneous inhibitory events in hippocampal pyramidal CA1 neurons, we found that gephyrin-dependent subcellular pathways may shape synaptic events at different levels, and can be correlated with cell- or event-specific activity history and/or pathological conditions.

19.
J Neurosci ; 36(20): 5437-47, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27194325

RESUMO

UNLABELLED: Phosphorylation of serine/threonine residues preceding a proline regulates the fate of its targets through postphosphorylation conformational changes catalyzed by the peptidyl-prolyl cis-/trans isomerase Pin1. By flipping the substrate between two different functional conformations, this enzyme exerts a fine-tuning of phosphorylation signals. Pin1 has been detected in dendritic spines and shafts where it regulates protein synthesis required to sustain the late phase of long-term potentiation (LTP). Here, we demonstrate that Pin1 residing in postsynaptic structures can interact with postsynaptic density protein-95 (PSD-95), a key scaffold protein that anchors NMDA receptors (NMDARs) in PSD via GluN2-type receptor subunits. Pin1 recruitment by PSD-95 occurs at specific serine-threonine/proline consensus motifs localized in the linker region connecting PDZ2 to PDZ3 domains. Upon binding, Pin1 triggers structural changes in PSD-95, thus negatively affecting its ability to interact with NMDARs. In electrophysiological experiments, larger NMDA-mediated synaptic currents, evoked in CA1 principal cells by Schaffer collateral stimulation, were detected in hippocampal slices obtained from Pin1(-/-) mice compared with controls. Similar results were obtained in cultured hippocampal cells expressing a PSD-95 mutant unable to undergo prolyl-isomerization, thus indicating that the action of Pin1 on PSD-95 is critical for this effect. In addition, an enhancement in spine density and size was detected in CA1 principal cells of Pin1(-/-) or in Thy-1GFP mice treated with the pharmacological inhibitor of Pin1 catalytic activity PiB.Our data indicate that Pin1 controls synaptic content of NMDARs via PSD-95 prolyl-isomerization and the expression of dendritic spines, both required for LTP maintenance. SIGNIFICANCE STATEMENT: PSD-95, a membrane-associated guanylate kinase, is the major scaffolding protein at excitatory postsynaptic densities and a potent regulator of synaptic strength and plasticity. The activity of PSD-95 is tightly controlled by several post-translational mechanisms including proline-directed phosphorylation. This signaling cascade regulates the fate of its targets through postphosphorylation conformational modifications catalyzed by the peptidyl-prolyl cis-/trans isomerase Pin1. Here, we uncover a new role of Pin1 in glutamatergic signaling. By interacting with PSD-95, Pin1 dampens PSD-95 ability to complex with NMDARs, thus negatively affecting NMDAR signaling and spine morphology. Our findings further emphasize the emerging role of Pin1 as a key modulator of synaptic transmission.


Assuntos
Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/citologia , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Feminino , Células HEK293 , Humanos , Isomerismo , Potenciação de Longa Duração , Masculino , Camundongos , Peptidilprolil Isomerase de Interação com NIMA/genética , Ligação Proteica , Sinapses/fisiologia , Transmissão Sináptica
20.
J Physiol ; 594(13): 3489-500, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26969302

RESUMO

BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary ß and γ subunits to regulate Ca(2+) sensitivity, voltage dependence and gating properties. Abundantly expressed in the CNS, they have the peculiar characteristic of being activated by both voltage and intracellular calcium rise. The increase in intracellular calcium via voltage-dependent calcium channels (Cav ) during spiking triggers conformational changes and BK channel opening. This narrows the action potential and induces a fast after-hyperpolarization that shuts calcium channels. The tight coupling between BK and Cav channels at presynaptic active zones makes them particularly suitable for regulating calcium entry and neurotransmitter release. While in most synapses, BK channels exert a negative control on transmitter release under basal conditions, in others they do so only under pathological conditions, serving as an emergency brake to protect against hyperactivity. In particular cases, by interacting with other channels (i.e. limiting the activation of the delayed rectifier and the inactivation of Na(+) channels), BK channels induce spike shortening, increase in firing rate and transmitter release. Changes in transmitter release following BK channel dysfunction have been implicated in several neurological disorders including epilepsy, schizophrenia, fragile X syndrome, mental retardation and autism. In particular, two mutations, one in the α and one in the ß3 subunit, resulting in a gain of function have been associated with epilepsy. Hence, these discoveries have allowed identification of BK channels as new drug targets for therapeutic intervention.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Animais , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Neurotransmissores/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA