RESUMO
Low-temperature plasma is an emerging approach for the treatment of bacterial infections. Nonchemical treatments such as cold plasma offer potential solutions to antibiotic resistance. We investigated the use of laser-induced graphene as an inexpensive, lightweight, and portable electrode for generating cold plasma. At the same time, the mechanism or molecular mediators of cold plasma-induced antibacterial activity remain poorly understood. This study validates graphene as an efficient structure for producing therapeutic cold plasma, and this study also indicates that ozone is the primary mediator of antibacterial activity in graphene-mediated cold plasmas for bacterial growth under the conditions studied.
RESUMO
Mild traumatic brain injuries (mTBIs) are the most common type of brain injury. Timely diagnosis of mTBI is crucial in making 'go/no-go' decision in order to prevent repeated injury, avoid strenuous activities which may prolong recovery, and assure capabilities of high-level performance of the subject. If undiagnosed, mTBI may lead to various short- and long-term abnormalities, which include, but are not limited to impaired cognitive function, fatigue, depression, irritability, and headaches. Existing screening and diagnostic tools to detect acute andearly-stagemTBIs have insufficient sensitivity and specificity. This results in uncertainty in clinical decision-making regarding diagnosis and returning to activity or requiring further medical treatment. Therefore, it is important to identify relevant physiological biomarkers that can be integrated into a mutually complementary set and provide a combination of data modalities for improved on-site diagnostic sensitivity of mTBI. In recent years, the processing power, signal fidelity, and the number of recording channels and modalities of wearable healthcare devices have improved tremendously and generated an enormous amount of data. During the same period, there have been incredible advances in machine learning tools and data processing methodologies. These achievements are enabling clinicians and engineers to develop and implement multiparametric high-precision diagnostic tools for mTBI. In this review, we first assess clinical challenges in the diagnosis of acute mTBI, and then consider recording modalities and hardware implementation of various sensing technologies used to assess physiological biomarkers that may be related to mTBI. Finally, we discuss the state of the art in machine learning-based detection of mTBI and consider how a more diverse list of quantitative physiological biomarker features may improve current data-driven approaches in providing mTBI patients timely diagnosis and treatment.
Assuntos
Concussão Encefálica , Lesões Encefálicas , Dispositivos Eletrônicos Vestíveis , Humanos , Aprendizado de Máquina , Sensibilidade e EspecificidadeRESUMO
This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale.
RESUMO
Shortwave (MHz range) radiofrequency (RF) energy is nonionizing, penetrates deeply into biological tissues with no adverse side effects, and heats metallic nanoparticles efficiently. Targeted delivery of these nanoparticles to cancer cells should result in hyperthermic cytotoxicity upon exposure to a focused, noninvasive RF field. We have demonstrated that gold nanoparticles conjugated with cetuximab (C225) are quickly internalized by Panc-1 (pancreatic adenocarcinoma) and Difi (colorectal adenocarcinoma) cancer cells overexpressing epidermal growth factor receptor (EGFR). Panc-1 or Difi cells treated with naked gold nanoparticles or nonspecific IgG-conjugated gold nanoparticles demonstrated minimal intracellular uptake of gold nanoparticles by transmission electron microscopy (TEM). In contrast, there were dense concentrations of cytoplasmic vesicles containing gold nanoparticles following treatment with cetuximab-conjugated gold nanoparticles. Exposure of cells to a noninvasive RF field produced nearly 100% cytotoxicity in cells treated with the cetuximab-conjugated gold nanoparticles, but significantly lower levels of cytotoxicity in the two control groups (p < 0.00012). Treatment of a breast cancer cell line (CAMA-1) that does not express EGFR with cetuximab-conjugated gold nanoparticles produced no enhanced cytotoxicity following treatment in the RF field. Conjugation of cancer cell-directed targeting agents to gold nanoparticles may represent an effective and cancer-specific therapy to treat numerous types of human malignant disease using noninvasive RF hyperthermia.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Neoplasias/patologia , Neoplasias/terapia , Ondas de Rádio , Temperatura , Anticorpos/metabolismo , Apoptose , Linhagem Celular Tumoral , Humanos , Neoplasias/ultraestruturaRESUMO
Replacing the two Mn(2+) ions normally present in human Arginase I with Co(2+) resulted in a significantly lowered K(M) value without a concomitant reduction in k(cat). In addition, the pH dependence of the reaction was shifted from a pK(a) of 8.5 to a pK(a) of 7.5. The combination of these effects led to a 10-fold increase in overall catalytic activity (k(cat)/K(M)) at pH 7.4, close to the pH of human serum. Just as important for therapeutic applications, Co(2+) substitution lead to significantly increased serum stability of the enzyme. Our data can be explained by direct coordination of l-Arg to one of the Co(2+) ions during reaction, consistent with previously reported model studies. In vitro cytotoxicity experiments verified that the Co(2+)-substituted human Arg I displays an approximately 12- to 15-fold lower IC(50) value for the killing of human hepatocellular carcinoma and melanoma cell lines and thus constitutes a promising new candidate for the treatment of l-Arg auxotrophic tumors.
Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Arginase/metabolismo , Arginase/uso terapêutico , Cobalto/metabolismo , Manganês/metabolismo , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Arginase/química , Arginase/genética , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Melanoma/tratamento farmacológico , Espectroscopia por Absorção de Raios XRESUMO
Despite the use of hyperthermia to treat cancer for thousands of years, the challenge of only heating malignant cells remains daunting. In pre-clinical and early clinical trials, metal nanoparticles induce hyperthermic cytotoxicity when exposed to near-infrared radiation or radiofrequency fields. We discuss the emerging roles of nanoparticles, especially gold, in the hyperthermic treatment of cancer. In addition, we discuss the similarities of radiofrequency ablation and nanoparticle mediated cytotoxicity.
Assuntos
Hipertermia Induzida/métodos , Nanopartículas Metálicas/administração & dosagem , Neoplasias/terapia , Ablação por Cateter/métodos , Ensaios Clínicos como Assunto , Ouro/química , Humanos , Nanotecnologia/métodosRESUMO
A new approach is described for delivering small interfering RNA (siRNA) into cancer cells by noncovalently complexing unmodified siRNA with pristine single-walled carbon nanotubes (SWCNTs). The complexes were prepared by simple sonication of pristine SWCNTs in a solution of siRNA, which then served both as the cargo and as the suspending agent for the SWCNTs. When complexes containing siRNA targeted to hypoxia-inducible factor 1 alpha (HIF-1α) were added to cells growing in serum containing culture media, there was strong specific inhibition of cellular HIF-1α activity. The ability to obtain a biological response to SWCNT/siRNA complexes was seen in a wide variety of cancer cell types. Moreover, intratumoral administration of SWCNT-HIF-1α siRNA complexes in mice bearing MiaPaCa-2/HRE tumors significantly inhibited the activity of tumor HIF-1α. As elevated levels of HIF-1α are found in many human cancers and are associated with resistance to therapy and decreased patient survival, these results imply that SWCNT/siRNA complexes may have value as therapeutic agents.
RESUMO
Shortwave (MHz range) radiofrequency (RF) energy is nonionizing, penetrates deeply into biologic tissues with no adverse side effects, and heats gold nanoparticles efficiently. Targeted delivery of gold nanoparticles to cancer cells should result in hyperthermic cytotoxicity upon exposure to a focused, noninvasive RF field. In this report we demonstrate that gold nanoparticles conjugated with cetuximab (C225) are quickly internalized by Panc-1 (pancreatic adenocarcinoma) and Difi (colorectal adenocarcinoma) cancer cells overexpressing epidermal growth factor receptor (EGFR). Panc-1 or Difi cells treated with naked gold nanoparticles or nonspecific IgG-conjugated gold nanoparticles demonstrated minimal intracellular uptake of gold nanoparticles by transmission electron microscopy (TEM). In contrast, there were dense concentrations of cytoplasmic vesicles containing gold nanoparticles following treatment with cetuximab-conjugated gold nanoparticles. Exposure of cells to a noninvasive RF field produced nearly 100% cytotoxicity in cells treated with the cetuximab-conjugated gold nanoparticles, but significantly lower levels of cytotoxicity in the two control groups (P < 0.00012). Treatment of a breast cancer cell line (CAMA-1) that does not express EGFR with cetuximab-conjugated gold nanoparticles produced no enhanced cytotoxicity following treatment in the RF field. Conjugation of cancer cell-directed targeting agents to gold nanoparticles may represent an effective and cancer-specific therapy to treat numerous types of human malignant disease using noninvasive RF hyperthermia.
Assuntos
Adenocarcinoma/tratamento farmacológico , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Adenocarcinoma/radioterapia , Anticorpos Monoclonais Humanizados , Apoptose , Linhagem Celular Tumoral , Cetuximab , Receptores ErbB/metabolismo , Humanos , Hipertermia Induzida , Microscopia Eletrônica de Transmissão , Necrose , Neoplasias Pancreáticas/radioterapia , Ondas de RádioRESUMO
RATIONALE AND OBJECTIVES: The capability of wavelet transforms to separate signals into frequency bands is the basis for its use in image compression and storage, data management and transmission, and, recently, extraction of latent images of tissue components from noisy medical images. Analysis of temporal variations of radiofrequency backscatter of intravascular ultrasound with one-dimensional wavelets can detect lipid-laden plaque in coronary arteries with a sensitivity and specificity of >80%. In this study we evaluate the capability of a novel, 3-dimensional isotropic wavelet analysis to perform high resolution, non-directionally biased, statistically reliable, non-invasive discrimination between components of human coronary atherosclerotic plaques in micro-CT. MATERIALS AND METHODS: Coronary artery segments (5-15 mm) were excised at necropsy from 18 individuals with advanced coronary atherosclerosis. Specimens were imaged using a GE Locus SP ex vivo micro-CT scanner and processed for histological correlation (833 sections). The isotropic wavelet constructs were applied to the entire volume of CT data of each arterial segment to distinguish tissue textures of varying scales and intensities. Voxels were classified and plaque characterization achieved by comparing the relative magnitudes of these wavelet constituents to that of several reference plaque tissue components. RESULTS: Processing of micro-CT images via these isotropic wavelet algorithms permitted 3-D, color-coded, high resolution, digital discrimination between lumen, calcific deposits, lipid-rich deposits, and fibromuscular tissue providing detail not possible with conventional thresholding based on Hounsfield intensity units. Using the isotropic wavelets (with histology as the gold standard), lipid-rich pools approaching the size of the filter for the isotropic wavelet algorithm (0.25 mm [250 microns] in length) were identified with 81% sensitivity and 86% specificity. Calcific deposits, fibromuscular tissue, and lumen equal to or larger than the wavelet filter size were detected without error (100% sensitivity and specificity). CONCLUSION: Isotropic wavelet analysis permits high resolution, multi-dimensional identification of coronary atherosclerotic plaque components in micro-CT with sensitivity and specificity similar to that achieved with data obtained invasively (from IVUS in vivo) using one-dimensional wavelets. Further studies are necessary to test the applicability of this technology to clinical, multi-detector scanners.
Assuntos
Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Calcinose/diagnóstico por imagem , Calcinose/patologia , Doença da Artéria Coronariana/patologia , Vasos Coronários/patologia , Feminino , Humanos , Lipídeos , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/diagnóstico por imagem , Músculo Liso Vascular/patologia , Intensificação de Imagem Radiográfica/métodos , Espalhamento de Radiação , Sensibilidade e Especificidade , Fatores de TempoRESUMO
OBJECTIVES: The incidence of coronary artery disease has been shown to be greater in patients with calcific deposits than in those without. It has been suggested that the pattern of distribution of coronary calcific deposits within coronary arteries is of greater predictive value for acute coronary events than the overall quantity. Whether roughness of calcific deposits is a predictor of acute coronary events is not known. We derived and tested an algorithm, Voxel-Based Bosselation (VBB), for noninvasive quantification of roughness of calcific deposits in human coronary arteries imaged by computed tomography (CT). METHODS AND RESULTS: VBB was tested on 213 coronary calcific deposits from electron beam CT scans of 27 patients. This algorithm evaluates the 3-dimensional connectedness of surface voxels of each deposit: smooth masses have low VBB and rough masses high VBB. The algorithm was calibrated with artificially generated phantoms as well as background noise mimicking calcific deposits and surrounding heart tissue. The VBB algorithm is applicable to calcific deposits of all scales and gradations. The VBB values of the deposits in this study did not correlate with deposit size further supporting its validity as a measurement of roughness. The VBB index corresponded directly with visual reconstruction using Phong-shaded algorithms. CONCLUSIONS: The VBB index, derived here, is a noninvasive method of quantifying the roughness of calcific deposits in CT scan data which can now be used in future clinical studies to determine possible correlations with increased plaque vulnerability and major acute coronary events.
Assuntos
Calcinose/diagnóstico por imagem , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Propriedades de SuperfícieRESUMO
BACKGROUND: Single-walled carbon nanotubes (SWNTs) have remarkable physicochemical properties that may have several medical applications. The authors have discovered a novel property of SWNTs-heat release in a radiofrequency (RF) field-that they hypothesized may be used to produce thermal cytotoxicity in malignant cells. METHODS: Functionalized, water-soluble SWNTs were exposed to a noninvasive, 13.56-megahertz RF field, and heating characteristics were measured with infrared thermography. Three human cancer cell lines were incubated with various concentrations of SWNTs and then treated in the RF field. Cytotoxicity was measured by fluorescence-activated cell sorting. Hepatic VX2 tumors in rabbits were injected with SWNTs or with control solutions and were treated in the RF field. Tumors were harvested 48 hours later to assess viability. RESULTS: The RF field induced efficient heating of aqueous suspensions of SWNTs. This phenomenon was used to produce a noninvasive, selective, and SWNT concentration-dependent thermal destruction in vitro of human cancer cells that contained internalized SWNTs. Direct intratumoral injection of SWNTs in vivo followed by immediate RF field treatment was tolerated well by rabbits bearing hepatic VX2 tumors. At 48 hours, all SWNT-treated tumors demonstrated complete necrosis, whereas control tumors that were treated with RF without SWNTs remained completely viable. Tumors that were injected with SWNTs but were not treated with RF also were viable. CONCLUSIONS: The current results suggested that SWNTs targeted to cancer cells may allow noninvasive RF field treatments to produce lethal thermal injury to the malignant cells. Now, the authors are developing SWNTs coupled with cancer cell-targeting agents to enhance SWNT uptake by cancer cells while limiting uptake by normal cells.
Assuntos
Incineração , Neoplasias Hepáticas/terapia , Nanotubos de Carbono , Terapia por Radiofrequência , Animais , Sobrevivência Celular , Humanos , Nanotubos de Carbono/efeitos adversos , Coelhos , Células Tumorais CultivadasRESUMO
The ability of near-infrared fluorescence imaging to detect single-walled carbon nanotubes (SWNTs) in organisms and biological tissues has been explored using Drosophila melanogaster (fruit flies). Drosophila larvae were raised on food containing approximately 10 ppm of disaggregated SWNTs. Their viability and growth were not reduced by nanotube ingestion. Near-IR nanotube fluorescence was imaged from intact living larvae, and individual nanotubes in dissected tissue specimens were imaged, structurally identified, and counted to estimate a biodistribution.
Assuntos
Materiais Biocompatíveis/farmacocinética , Drosophila melanogaster/química , Nanotubos de Carbono/química , Espectrofotometria Infravermelho/métodos , Administração Oral , Animais , Materiais Biocompatíveis/administração & dosagem , Drosophila melanogaster/efeitos dos fármacos , Especificidade de Órgãos , Distribuição TecidualRESUMO
Individualized, chemically pristine single-walled carbon nanotubes have been intravenously administered to rabbits and monitored through their characteristic near-infrared fluorescence. Spectra indicated that blood proteins displaced the nanotube coating of synthetic surfactant molecules within seconds. The nanotube concentration in the blood serum decreased exponentially with a half-life of 1.0 +/- 0.1 h. No adverse effects from low-level nanotube exposure could be detected from behavior or pathological examination. At 24 h after i.v. administration, significant concentrations of nanotubes were found only in the liver. These results demonstrate that debundled single-walled carbon nanotubes are high-contrast near-infrared fluorophores that can be sensitively and selectively tracked in mammalian tissues using optical methods. In addition, the absence of acute toxicity and promising circulation persistence suggest the potential of carbon nanotubes in future pharmaceutical applications.
Assuntos
Nanotubos de Carbono/análise , Espectrometria de Fluorescência/métodos , Espectrofotometria Infravermelho/métodos , Animais , Coelhos , Tensoativos/farmacocinéticaRESUMO
This editorial addresses the capabilities, limitations, and potential of multidetector computed tomography (MDCT) for the noninvasive evaluation of coronary arteries in asymptomatic patients. The quantification of coronary calcium with MDCT correlates highly with that obtained by electron-beam computed tomography, but to date, neither has the capability of assessing the distribution of various morphologic patterns of calcium and their relation to other "soft" plaque components. Although MDCT can assess the thickness of the atherosclerotic wall and can readily identify calcific deposits, further plaque characterization (e.g., lipid pools and fibrous tissue), a prerequisite for the identification of most vulnerable lesions, is not yet a workable reality, even with the 64-slice machines in their current configuration. The noninvasive identification by MDCT of plaque components subtending vulnerable lesions will require additional improvement in the primary instrumentation, the use of hybrid constructs (e.g., with positron emission tomography and magnetic resonance imaging), the development of novel methods of post-acquisitional analysis to extract latent images of plaque components (e.g., signal analysis based on 3-dimensional wavelets), or the adaptation of molecular imaging techniques at the cell and gene levels to computed tomography. Such unique approaches may soon contribute a long list of additional parameters that could be evaluated on a noninvasive basis as predictors of acute coronary syndromes and overall patient vulnerability.
Assuntos
Angiografia Coronária/métodos , Vasos Coronários/química , Tomografia Computadorizada por Raios X/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Estenose Coronária/diagnóstico por imagem , HumanosRESUMO
The uptake of pristine single-walled carbon nanotubes into macrophage-like cells has been studied using the nanotubes' intrinsic near-infrared fluorescence. Macrophage samples that have been incubated in growth media containing suspended single-walled nanotubes show characteristic nanotube fluorescence spectra. The fluorescence intensities increase smoothly with incubation time and external nanotube concentration. Near-infrared fluorescence microscopy at wavelengths above 1100 nm provides high contrast images indicating localization of nanotubes in numerous intracellular vesicles. Nanotube uptake appears to occur through phagocytosis. Population growth of macrophage cultures is unaffected by exposure to single-walled nanotube concentrations of ca. 4 mug/mL for up to 96 h.