Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Nat Commun ; 15(1): 3844, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714690

RESUMO

Multiple myeloma (MM) is a heterogeneous disease characterized by frequent MYC translocations. Sporadic MYC activation in the germinal center of genetically engineered Vk*MYC mice is sufficient to induce plasma cell tumors in which a variety of secondary mutations are spontaneously acquired and selected over time. Analysis of 119 Vk*MYC myeloma reveals recurrent copy number alterations, structural variations, chromothripsis, driver mutations, apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) mutational activity, and a progressive decrease in immunoglobulin transcription that inversely correlates with proliferation. Moreover, we identify frequent insertional mutagenesis by endogenous retro-elements as a murine specific mechanism to activate NF-kB and IL6 signaling pathways shared with human MM. Despite the increased genomic complexity associated with progression, advanced tumors remain dependent on MYC. In summary, here we credential the Vk*MYC mouse as a unique resource to explore MM genomic evolution and describe a fully annotated collection of diverse and immortalized murine MM tumors.


Assuntos
Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-myc , Animais , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transformação Celular Neoplásica/genética , Mutação , Transdução de Sinais/genética , Camundongos Transgênicos , NF-kappa B/metabolismo , NF-kappa B/genética , Mutagênese Insercional , Variações do Número de Cópias de DNA/genética , Genômica/métodos , Translocação Genética
2.
Sci Immunol ; 9(94): eadg1094, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640253

RESUMO

Chronic antigen stimulation is thought to generate dysfunctional CD8 T cells. Here, we identify a CD8 T cell subset in the bone marrow tumor microenvironment that, despite an apparent terminally exhausted phenotype (TPHEX), expressed granzymes, perforin, and IFN-γ. Concurrent gene expression and DNA accessibility revealed that genes encoding these functional proteins correlated with BATF expression and motif accessibility. IFN-γ+ TPHEX effectively killed myeloma with comparable efficacy to transitory effectors, and disease progression correlated with numerical deficits in IFN-γ+ TPHEX. We also observed IFN-γ+ TPHEX within CD19-targeted chimeric antigen receptor T cells, which killed CD19+ leukemia cells. An IFN-γ+ TPHEX gene signature was recapitulated in TEX cells from human cancers, including myeloma and lymphoma. Here, we characterize a TEX subset in hematological malignancies that paradoxically retains function and is distinct from dysfunctional TEX found in chronic viral infections. Thus, IFN-γ+ TPHEX represent a potential target for immunotherapy of blood cancers.


Assuntos
Neoplasias Hematológicas , Mieloma Múltiplo , Humanos , Receptor Celular 2 do Vírus da Hepatite A , Mieloma Múltiplo/metabolismo , Linfócitos T CD8-Positivos , Fenótipo , Microambiente Tumoral
3.
Blood Cancer Discov ; 5(3): 146-152, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441243

RESUMO

SUMMARY: While the current approach to precursor hematologic conditions is to "watch and wait," this may change with the development of therapies that are safe and extend survival or delay the onset of symptomatic disease. The goal of future therapies in precursor hematologic conditions is to improve survival and prevent or delay the development of symptomatic disease while maximizing safety. Clinical trial considerations in this field include identifying an appropriate at-risk population, safety assessments, dose selection, primary and secondary trial endpoints including surrogate endpoints, control arms, and quality-of-life metrics, all of which may enable more precise benefit-risk assessment.


Assuntos
Ensaios Clínicos como Assunto , Mieloma Múltiplo , Mieloma Múltiplo/terapia , Mieloma Múltiplo/tratamento farmacológico , Humanos , Ensaios Clínicos como Assunto/métodos , Projetos de Pesquisa , Qualidade de Vida
4.
Nat Commun ; 15(1): 1203, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331987

RESUMO

DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover mechanisms through which MM cells overcome DNA damage, we investigate how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting Interleukin enhancer binding factor 2 (ILF2), a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo adaptive metabolic rewiring to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identify the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage. Our study reveals a mechanism of vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , DNA Helicases/metabolismo , Reprogramação Metabólica , Reparo do DNA , Dano ao DNA
5.
J Clin Oncol ; 42(11): 1229-1240, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38194610

RESUMO

PURPOSE: Outcomes for patients with newly diagnosed multiple myeloma (NDMM) are heterogenous, with overall survival (OS) ranging from months to over 10 years. METHODS: To decipher and predict the molecular and clinical heterogeneity of NDMM, we assembled a series of 1,933 patients with available clinical, genomic, and therapeutic data. RESULTS: Leveraging a comprehensive catalog of genomic drivers, we identified 12 groups, expanding on previous gene expression-based molecular classifications. To build a model predicting individualized risk in NDMM (IRMMa), we integrated clinical, genomic, and treatment variables. To correct for time-dependent variables, including high-dose melphalan followed by autologous stem-cell transplantation (HDM-ASCT), and maintenance therapy, a multi-state model was designed. The IRMMa model accuracy was significantly higher than all comparator prognostic models, with a c-index for OS of 0.726, compared with International Staging System (ISS; 0.61), revised-ISS (0.572), and R2-ISS (0.625). Integral to model accuracy was 20 genomic features, including 1q21 gain/amp, del 1p, TP53 loss, NSD2 translocations, APOBEC mutational signatures, and copy-number signatures (reflecting the complex structural variant chromothripsis). IRMMa accuracy and superiority compared with other prognostic models were validated on 256 patients enrolled in the GMMG-HD6 (ClinicalTrials.gov identifier: NCT02495922) clinical trial. Individualized patient risks were significantly affected across the 12 genomic groups by different treatment strategies (ie, treatment variance), which was used to identify patients for whom HDM-ASCT is particularly effective versus patients for whom the impact is limited. CONCLUSION: Integrating clinical, demographic, genomic, and therapeutic data, to our knowledge, we have developed the first individualized risk-prediction model enabling personally tailored therapeutic decisions for patients with NDMM.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Mieloma Múltiplo/diagnóstico , Prognóstico , Melfalan , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Genômica , Transplante Autólogo , Estudos Retrospectivos
6.
Hematol Oncol Clin North Am ; 38(2): 533-546, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38233233

RESUMO

Immunocompetent mouse models of multiple myeloma (MM) are particularly needed in the era of T cell redirected therapy to understand drivers of sensitivity and resistance, optimize responses, and prevent toxicities. Three mouse models have been extensively characterized: the Balb/c plasmacytomas, the 5TMM, and the Vk*MYC. In the last year, additional models have been generated, which, for the first time, capture primary MM initiating events, like MMSET/NSD2 or cyclin D1 dysregulation. However, the long latency needed for tumor development and the lack of transplantable lines limit their utilization. Future studies should focus on modeling hyperdiploid MM.


Assuntos
Mieloma Múltiplo , Camundongos , Animais , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Mieloma Múltiplo/metabolismo , Modelos Animais de Doenças
7.
Blood Cancer Discov ; 5(1): 34-55, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-37767768

RESUMO

Multiple myeloma (MM) is a malignancy that is often driven by MYC and that is sustained by IRF4, which are upregulated by super-enhancers. IKZF1 and IKZF3 bind to super-enhancers and can be degraded using immunomodulatory imide drugs (IMiD). Successful IMiD responses downregulate MYC and IRF4; however, this fails in IMiD-resistant cells. MYC and IRF4 downregulation can also be achieved in IMiD-resistant tumors using inhibitors of BET and EP300 transcriptional coactivator proteins; however, in vivo these drugs have a narrow therapeutic window. By combining IMiDs with EP300 inhibition, we demonstrate greater downregulation of MYC and IRF4, synergistic killing of myeloma in vitro and in vivo, and an increased therapeutic window. Interestingly, this potent combination failed where MYC and IRF4 expression was maintained by high levels of the AP-1 factor BATF. Our results identify an effective drug combination and a previously unrecognized mechanism of IMiD resistance. SIGNIFICANCE: These results highlight the dependence of MM on IKZF1-bound super-enhancers, which can be effectively targeted by a potent therapeutic combination pairing IMiD-mediated degradation of IKZF1 and IKZF3 with EP300 inhibition. They also identify AP-1 factors as an unrecognized mechanism of IMiD resistance in MM. See related article by Neri, Barwick, et al., p. 56. See related commentary by Yun and Cleveland, p. 5. This article is featured in Selected Articles from This Issue, p. 4.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Fator de Transcrição AP-1/uso terapêutico , Combinação de Medicamentos , Agentes de Imunomodulação
8.
Cell Rep Med ; 4(10): 101214, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37794587

RESUMO

Multiple myeloma (MM) growth is supported by an immune-tolerant bone marrow microenvironment. Here, we find that loss of Never in mitosis gene A (NIMA)-related kinase 2 (NEK2) in tumor microenvironmental cells is associated with MM growth suppression. The absence of NEK2 leads to both fewer tumor-associated macrophages (TAMs) and inhibitory T cells. NEK2 expression in myeloid progenitor cells promotes the generation of functional TAMs when stimulated with MM conditional medium. Clinically, high NEK2 expression in MM cells is associated with increased CD8+ T effector memory cells, while low NEK2 is associated with an IFN-γ gene signature and activated T cell response. Inhibition of NEK2 upregulates PD-L1 expression in MM cells and myeloid cells. In a mouse model, the combination of NEK2 inhibitor INH154 with PD-L1 blockade effectively eliminates MM cells and prolongs survival. Our results provide strong evidence that NEK2 inhibition may overcome tumor immune escape and support its further clinical development.


Assuntos
Mieloma Múltiplo , Camundongos , Animais , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Antígeno B7-H1/genética , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patologia , Microambiente Tumoral
9.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546905

RESUMO

Despite advancements in profiling multiple myeloma (MM) and its precursor conditions, there is limited information on mechanisms underlying disease progression. Clincal efforts designed to deconvolute such mechanisms are challenged by the long lead time between monoclonal gammopathy and its transformation to MM. MM mouse models represent an opportunity to overcome this temporal limitation. Here, we profile the genomic landscape of 118 genetically engineered Vk*MYC MM and reveal that it recapitulates the genomic heterogenenity and life history of human MM. We observed recurrent copy number alterations, structural variations, chromothripsis, driver mutations, APOBEC mutational activity, and a progressive decrease in immunoglobulin transcription that inversely correlates with proliferation. Moreover, we identified frequent insertional mutagenesis by endogenous retro-elements as a murine specific mechanism to activate NF-kB and IL6 signaling pathways shared with human MM. Despite the increased genomic complexity associated with progression, advanced tumors remain dependent on MYC expression, that drives the progression of monoclonal gammopathy to MM.

10.
Blood Cancer J ; 13(1): 84, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217482

RESUMO

Multiple myeloma (MM) remains an incurable plasma cell (PC) malignancy. Although it is known that MM tumor cells display extensive intratumoral genetic heterogeneity, an integrated map of the tumor proteomic landscape has not been comprehensively evaluated. We evaluated 49 primary tumor samples from newly diagnosed or relapsed/refractory MM patients by mass cytometry (CyTOF) using 34 antibody targets to characterize the integrated landscape of single-cell cell surface and intracellular signaling proteins. We identified 13 phenotypic meta-clusters across all samples. The abundance of each phenotypic meta-cluster was compared to patient age, sex, treatment response, tumor genetic abnormalities and overall survival. Relative abundance of several of these phenotypic meta-clusters were associated with disease subtypes and clinical behavior. Increased abundance of phenotypic meta-cluster 1, characterized by elevated CD45 and reduced BCL-2 expression, was significantly associated with a favorable treatment response and improved overall survival independent of tumor genetic abnormalities or patient demographic variables. We validated this association using an unrelated gene expression dataset. This study represents the first, large-scale, single-cell protein atlas of primary MM tumors and demonstrates that subclonal protein profiling may be an important determinant of clinical behavior and outcome.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteômica , Plasmócitos/metabolismo
11.
Blood ; 141(23): 2841-2852, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36877894

RESUMO

Therapeutic targeting of CDK7 has proven beneficial in preclinical studies, yet the off-target effects of currently available CDK7 inhibitors make it difficult to pinpoint the exact mechanisms behind MM cell death mediated by CDK7 inhibition. Here, we show that CDK7 expression positively correlates with E2F and MYC transcriptional programs in cells from patients with multiple myeloma (MM); its selective targeting counteracts E2F activity via perturbation of the cyclin-dependent kinases/Rb axis and impairs MYC-regulated metabolic gene signatures translating into defects in glycolysis and reduced levels of lactate production in MM cells. CDK7 inhibition using the covalent small-molecule inhibitor YKL-5-124 elicits a strong therapeutic response with minimal effects on normal cells, and causes in vivo tumor regression, increasing survival in several mouse models of MM including a genetically engineered mouse model of MYC-dependent MM. Through its role as a critical cofactor and regulator of MYC and E2F activity, CDK7 is therefore a master regulator of oncogenic cellular programs supporting MM growth and survival, and a valuable therapeutic target providing rationale for development of YKL-5-124 for clinical use.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Mieloma Múltiplo , Animais , Camundongos , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Mieloma Múltiplo/genética
12.
bioRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865225

RESUMO

DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover novel mechanisms through which MM cells overcome DNA damage, we investigated how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting ILF2, a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo an adaptive metabolic rewiring and rely on oxidative phosphorylation to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identified the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage and maintaining mitochondrial respiration. Our study revealed a novel vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation. STATEMENT OF SIGNIFICANCE: Metabolic reprogramming is a mechanism through which cancer cells maintain survival and become resistant to DNA-damaging therapy. Here, we show that targeting DNA2 is synthetically lethal in myeloma cells that undergo metabolic adaptation and rely on oxidative phosphorylation to maintain survival after DNA damage activation.

13.
Nat Med ; 29(3): 632-645, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928817

RESUMO

The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials.


Assuntos
Mieloma Múltiplo , Camundongos , Animais , Mieloma Múltiplo/terapia , Mieloma Múltiplo/tratamento farmacológico , Linfócitos T CD8-Positivos , Evasão da Resposta Imune , Linfócitos T Reguladores , Imunoterapia/efeitos adversos , Microambiente Tumoral/genética
14.
Front Oncol ; 12: 842200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646666

RESUMO

Multiple myeloma (MM) is an incurable plasma cell malignancy with dose-limiting toxicities and inter-individual variation in response/resistance to the standard-of-care/primary drugs, proteasome inhibitors (PIs), and immunomodulatory derivatives (IMiDs). Although newer therapeutic options are potentially highly efficacious, their costs outweigh the effectiveness. Previously, we have established that clofazimine (CLF) activates peroxisome proliferator-activated receptor-γ, synergizes with primary therapies, and targets cancer stem-like cells (CSCs) in drug-resistant chronic myeloid leukemia (CML) patients. In this study, we used a panel of human myeloma cell lines as in vitro model systems representing drug-sensitive, innate/refractory, and clonally-derived acquired/relapsed PI- and cereblon (CRBN)-negative IMiD-resistant myeloma and bone marrow-derived CD138+ primary myeloma cells obtained from patients as ex vivo models to demonstrate that CLF shows significant cytotoxicity against drug-resistant myeloma as single-agent and in combination with PIs and IMiDs. Next, using genome-wide transcriptome analysis (RNA-sequencing), single-cell proteomics (CyTOF; Cytometry by time-of-flight), and ingenuity pathway analysis (IPA), we identified novel pathways associated with CLF efficacy, including induction of ER stress, autophagy, mitochondrial dysfunction, oxidative phosphorylation, enhancement of downstream cascade of p65-NFkB-IRF4-Myc downregulation, and ROS-dependent apoptotic cell death in myeloma. Further, we also showed that CLF is effective in killing rare refractory subclones like side populations that have been referred to as myeloma stem-like cells. Since CLF is an FDA-approved drug and also on WHO's list of safe and effective essential medicines, it has strong potential to be rapidly re-purposed as a safe and cost-effective anti-myeloma drug.

15.
Oncotarget ; 13: 490-504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251496

RESUMO

Multiple myeloma (MM) is a hematological malignancy of plasma cells that remains incurable despite significant progress with myeloablative regimens and autologous stem cell transplantation for eligible patients and, more recently with T cell redirected immunotherapy. Recently, we reported that ex vivo virotherapy with oncolytic myxoma virus (MYXV) improved MM-free survival in an autologous-transplant Balb/c mouse model. Here, we tested the Vk*MYC transplantable C57BL/6 mouse MM model that more closely recapitulates human disease. In vitro, the murine bortezomib-resistant Vk12598 cell line is fully susceptible to MYXV infection. In vivo results demonstrate: (i) autologous bone marrow (BM) leukocytes armed ex vivo with MYXV exhibit moderate therapeutic effects against MM cells pre-seeded into recipient mice; (ii) Cyclophosphamide in combination with BM/MYXV delays the onset of myeloma in mice seeded with Vk12598 cells; (iii) BM/MYXV synergizes with the Smac-mimetics LCL161 and with immune checkpoint inhibitor α-PD-1 to control the progression of established MM in vivo, resulting in significant improvement of survival rates and decreased of tumor burden; (iv) Survivor mice from (ii) and (iii), when re-challenged with fresh Vk12598 cells, developed acquired anti-MM immunity. These results highlight the utility of autologous BM grafts armed ex vivo with oncolytic MYXV alone or in combination with chemotherapy/immunotherapy to treat drug-resistant MM in vivo.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Myxoma virus , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Medula Óssea , Bortezomib/farmacologia , Ciclofosfamida , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Inibidores de Checkpoint Imunológico , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/terapia , Terapia Viral Oncolítica/métodos , Receptor de Morte Celular Programada 1 , Transplante Autólogo
16.
Nat Commun ; 12(1): 6322, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732728

RESUMO

Molecular programs that underlie precursor progression in multiple myeloma are incompletely understood. Here, we report a disease spectrum-spanning, single-cell analysis of the Vκ*MYC myeloma mouse model. Using samples obtained from mice with serologically undetectable disease, we identify malignant cells as early as 30 weeks of age and show that these tumours contain subclonal copy number variations that persist throughout progression. We detect intratumoural heterogeneity driven by transcriptional variability during active disease and show that subclonal expression programs are enriched at different times throughout early disease. We then show how one subclonal program related to GCN2 stress response is progressively activated during progression in myeloma patients. Finally, we use chemical and genetic perturbation of GCN2 in vitro to support this pathway as a therapeutic target in myeloma. These findings therefore present a model of precursor progression in Vκ*MYC mice, nominate an adaptive mechanism important for myeloma survival, and highlight the need for single-cell analyses to understand the biological underpinnings of disease progression.


Assuntos
Progressão da Doença , Mieloma Múltiplo/genética , Análise de Célula Única/métodos , Animais , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Heterogeneidade Genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/metabolismo , Proteínas Serina-Treonina Quinases/genética
17.
Blood Cancer Discov ; 2(4): 354-369, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34258584

RESUMO

BCMA-CD3-targeting bispecific antibodies (BsAb) are a recently developed immunotherapy class which shows potent tumor killing activity in multiple myeloma (MM). Here, we investigated a murine BCMA-CD3-targeting BsAb in the immunocompetent Vk*MYC and its IMiD-sensitive derivative Vk*MYChCRBN models of MM. The BCMA-CD3 BsAb was safe and efficacious in a subset of mice, but failed in those with high-tumor burden, consistent with clinical reports of BsAb in leukemia. The combination of BCMA-CD3 BsAb with pomalidomide expanded lytic T cells and improved activity even in IMiD resistant high-tumor burden cases. Yet, survival was only marginally extended due to acute toxicity and T cell exhaustion, which impaired T cell persistence. In contrast, the combination with cyclophosphamide was safe and allowed for a tempered pro-inflammatory response associated with long-lasting complete remission. Concurrent cytotoxic therapy with BsAb actually improved T cell persistence and function, offering a promising approach to patients with a large tumor burden.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Animais , Anticorpos Biespecíficos/farmacologia , Humanos , Imunoterapia , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Linfócitos T , Carga Tumoral
18.
Blood ; 137(1): 61-74, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640012

RESUMO

NRAS Q61 mutations are prevalent in advanced/relapsed multiple myeloma (MM) and correlate with poor patient outcomes. Thus, we generated a novel MM model by conditionally activating expression of endogenous NrasQ61R and an MYC transgene in germinal center (GC) B cells (VQ mice). VQ mice developed a highly malignant MM characterized by a high proliferation index, hyperactivation of extracellular signal-regulated kinase and AKT signaling, impaired hematopoiesis, widespread extramedullary disease, bone lesions, kidney abnormalities, preserved programmed cell death protein 1 and T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain immune-checkpoint pathways, and expression of human high-risk MM gene signatures. VQ MM mice recapitulate most of the biological and clinical features of human advanced/high-risk MM. These MM phenotypes are serially transplantable in syngeneic recipients. Two MM cell lines were also derived to facilitate future genetic manipulations. Combination therapies based on MEK inhibition significantly prolonged the survival of VQ mice with advanced-stage MM. Our study provides a strong rationale to develop MEK inhibition-based therapies for treating advanced/relapsed MM.


Assuntos
Linfócitos B/patologia , Modelos Animais de Doenças , Proteínas Monoméricas de Ligação ao GTP/genética , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Centro Germinativo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mieloma Múltiplo/patologia , Transgenes
19.
Blood Cancer Discov ; 1(1): 68-81, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32954360

RESUMO

The most common genetic abnormality in multiple myeloma (MM) is the deletion of chromosome 13, seen in almost half of newly diagnosed patients. Unlike chronic lymphocytic leukemia, where a recurrent minimally deleted region including MIR15A/MIR16-1 has been mapped, the deletions in MM predominantly involve the entire chromosome and no specific driver gene has been identified. Additional candidate loci include RB1 and DIS3, but while biallelic deletion of RB1 is associated with disease progression, DIS3 is a common essential gene and complete inactivation is not observed. The Vk*MYC transgenic mouse model of MM spontaneously acquires del(14), syntenic to human chromosome 13, and Rb1 complete inactivation, but not Dis3 mutations. Taking advantage of this model, we explored the role in MM initiation and progression of two candidate loci on chromosome 13: RB1 and MIR15A/MIR16-1. Monoallelic deletion of Mir15a/Mir16-1 but not Rb1 was sufficient to accelerate the development of monoclonal gammopathy in wildtype mice, and the progression of MM in Vk*MYC mice, resulting in increased expression of Mir15a/Mir16-1 target genes and plasma cell proliferation, which was similarly observed in patients with MM.


Assuntos
Leucemia Linfocítica Crônica de Células B , MicroRNAs , Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Animais , Proliferação de Células/genética , Progressão da Doença , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , MicroRNAs/genética , Gamopatia Monoclonal de Significância Indeterminada/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia
20.
Haematologica ; 105(6): 1641-1649, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31582538

RESUMO

The cellular cytotoxicity of APY0201, a PIKfyve inhibitor, against multiple myeloma was initially identified in an unbiased in vitro chemical library screen. The activity of APY0201 was confirmed in all 25 cell lines tested and in 40% of 100 ex vivo patient-derived primary samples, with increased activity in primary samples harboring trisomies and lacking t(11;14). The broad anti-multiple myeloma activity of PIKfyve inhibitors was further demonstrated in confirmatory screens and showed the superior potency of APY0201 when compared to the PIKfyve inhibitors YM201636 and apilimod, with a mid-point half maximal effective concentration (EC50) at nanomolar concentrations in, respectively, 65%, 40%, and 5% of the tested cell lines. Upregulation of genes in the lysosomal pathway and increased cellular vacuolization were observed in vitro following APY0201 treatment, although these cellular effects did not correlate well with responsiveness. We confirm that PIKfyve inhibition is associated with activation of the transcription factor EB, a master regulator of lysosomal biogenesis and autophagy. Furthermore, we established an assay measuring autophagy as a predictive marker of APY0201 sensitivity. Overall, these findings indicate promising activity of PIKfyve inhibitors secondary to disruption of autophagy in multiple myeloma and suggest a strategy to enrich for likely responders.


Assuntos
Mieloma Múltiplo , Autofagia , Humanos , Lisossomos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA