Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
BMJ Open ; 14(7): e079691, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955366

RESUMO

OBJECTIVES: As part of a wider study, our aim was to elicit perspectives of people with congenital heart disease (CHD) and/or their parents/carers about their experiences of healthcare and what is important to them when receiving care. DESIGN AND SETTING: A qualitative study involving a series of closed, asynchronous, online discussion forums underpinned by an interpretivist framework and set up and moderated by three patient charities via their Facebook pages. PARTICIPANTS: People with CHD and parents/carers of people with CHD from the UK. RESULTS: Five forums were run for 12-24 weeks across the three charities, and 343 participants signed up to the forums. Four linked themes related to processes of care were identified following thematic analysis of the transcripts: relationships and communication; access and coordination; experience of discrete episodes of care and psychological support. These impacted how care was experienced and, for some patients, outcomes of CHD and its treatment as well as broader health outcomes. In addition, context relating to stages of the patient journey was described, together with patient-related factors such as patients' knowledge and expertise in their own condition. CONCLUSIONS: People with CHD and their parents/carers want individualised, person-centred care delivered within an appropriately resourced, multidisciplinary service. Although examples of excellent care were provided it is evident that, from the perspective of patients and parents/carers, some National Health Service Standards for people with CHD were not being met.


Assuntos
Cardiopatias Congênitas , Pais , Pesquisa Qualitativa , Humanos , Cardiopatias Congênitas/terapia , Cardiopatias Congênitas/psicologia , Feminino , Masculino , Reino Unido , Pais/psicologia , Adulto , Cuidadores/psicologia , Comunicação , Pessoa de Meia-Idade , Assistência Centrada no Paciente , Adolescente , Adulto Jovem
2.
Commun Biol ; 6(1): 1017, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805576

RESUMO

Heart valve disease is a major cause of mortality and morbidity worldwide with no effective medical therapy and no ideal valve substitute emulating the extremely sophisticated functions of a living heart valve. These functions influence survival and quality of life. This has stimulated extensive attempts at tissue engineering "living" heart valves. These attempts utilised combinations of allogeneic/ autologous cells and biological scaffolds with practical, regulatory, and ethical issues. In situ regeneration depends on scaffolds that attract, house and instruct cells and promote connective tissue formation. We describe a surgical, tissue-engineered, anatomically precise, novel off-the-shelf, acellular, synthetic scaffold inducing a rapid process of morphogenesis involving relevant cell types, extracellular matrix, regulatory elements including nerves and humoral components. This process relies on specific material characteristics, design and "morphodynamism".


Assuntos
Próteses Valvulares Cardíacas , Engenharia Tecidual , Qualidade de Vida , Valvas Cardíacas , Alicerces Teciduais
3.
Sci Rep ; 13(1): 13619, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604902

RESUMO

Mycelia were cultivated from a Thai wild mushroom identified as Ganoderma australe based on polymerase chain reaction (PCR) and morphological analyses. The mycelial extracts were examined for their active ingredients using a liquid chromatography-tandem mass spectrometry (LC‒MS/MS) method. This revealed the presence of lovastatin and tentative compounds including p-coumaric, nicotinamide, gamma-aminobutyric acid, choline, nucleosides, amino acids, and saccharides. The extracts had an inhibitory effect on the activity of HMG-CoA reductase in a concentration-dependent manner. At 2.5 mg/mL, the G. australe extracts did not interfere with the viability of HepG2 spheroids, but their biochemical composition was altered as determined by Fourier-transform infrared (FTIR) spectroscopy. The lipid profile of the spheroids treated with the mycelial extract was distinct from that of the control and the 5 µM lovastatin treatment, corresponding with the production of cholesterol by the spheroids. The mycelia of G. australe increased the percentage of high-density lipoprotein (HDL) production to 71.35 ± 2.74%, compared to the control and lovastatin-treated spheroids (33.26 ± 3.15% and 32.13 ± 3.24%, respectively). This study revealed the superior effect of natural compound mixtures to pure lovastatin, and the potential use of Thailand's wild G. australe as a functional food to prevent or alleviate hypercholesterolemia.


Assuntos
Síncrotrons , Espectrometria de Massas em Tandem , Cromatografia Líquida , Fígado , Colesterol
4.
Glob Cardiol Sci Pract ; 2023(2): e202309, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37351095

RESUMO

The 2016 Albert Lasker Basic Medical Research Award and subsequently the 2019 Nobel Prize in Physiology or Medicine were awarded to William Kaelin, Jr., Sir Peter Ratcliffe, and Gregg Semenza for their work on how cells sense and adapt to hypoxic conditions. Their work showed that the changes in gene expression, cell metabolism, and tissue remodelling that occur in response to low oxygen concentrations are orchestrated by the transcription factor, hypoxia inducible factor-1α (HIF-1α). While the effects mediated by HIF-1α have been widely studied, its role in heart valves has only recently been investigated. These studies have shown that HIF-1α expression is evident in mechanisms that regulate the structure and function of heart valves. These include embryonic development, the regulation of the extracellular matrix, angiogenesis and the initiation of the calcification process. This review provides a background on the role and function of HIF-1α in response to hypoxia and a discussion of the available evidence of its involvement in the regulation of heart valves in health and disease.

5.
Biochem Biophys Res Commun ; 642: 90-96, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36566567

RESUMO

Calcific aortic valve disease affects the aortic side of the valve, exposed to low magnitude multidirectional ("disturbed) blood flow, more than it affects the ventricular side, exposed to high magnitude uniaxial flow. Overt disease is preceded by endothelial dysfunction and inflammation. Here we investigate the potential role of the transforming growth factor-ß (TGF-ß) receptor ALK5 in this process. Although ECs are always subject to shear stress due to blood flow, and their responses to shear stress are important in healthy valve development and homeostasis, low magnitude multidirectional flow can induce pathophysiological changes. Previous work has shown ALK5 to be an important mechanosensor. ALK5 transduces mechanically sensed signals via the activation of the SMAD2/3 transcriptional modulators. However, it is currently unclear precisely how ALK5-mediated shear stress responses translate into pathological changes under conditions of chronically disturbed flow. Here, we demonstrate that ALK5 mechanosensory signalling influences flow-induced endothelial leukocyte adhesion and paracellular permeability. Low magnitude multidirectional flow resulted in downregulation of the receptor, accompanied by increased SMAD2 phosphorylation, in human umbilical vein endothelial cell (HUVEC) monolayers. These changes correlated with elevated monocyte adhesion and significantly increased transendothelial transport of an albumin-sized tracer. These effects were abolished by inhibition of ALK5 kinase activity. Analysis of ALK5 expression patterns in porcine aortic valve tissue corroborated the findings from cell-based experiments. Together, these results suggest that ALK5 has a role in shear stress-associated cardiovascular disease pathology, emphasising the importance of further mechanistic investigations and supporting it as a potential therapeutic target.


Assuntos
Proteínas Serina-Treonina Quinases , Receptores de Fatores de Crescimento Transformadores beta , Animais , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Suínos
8.
Front Cardiovasc Med ; 9: 840647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463757

RESUMO

Cardiac valves exhibit highly complex structures and specialized functions that include dynamic interactions between cells, extracellular matrix (ECM) and their hemodynamic environment. Valvular gene expression is tightly regulated by a variety of mechanisms including epigenetic factors such as histone modifications, RNA-based mechanisms and DNA methylation. To date, methylation fingerprints of non-diseased human aortic and mitral valves have not been studied. In this work we analyzed the differential methylation profiles of 12 non-diseased aortic and mitral valve tissue samples (in matched pairs). Analysis of methylation data [reduced representation bisulfite sequencing (RRBS)] of 16,101 promoters genome-wide revealed 584 differentially methylated (DM) promoters, of which 13 were reported in endothelial mesenchymal trans-differentiation (EMT), 37 in aortic and mitral valve disease and 7 in ECM remodeling. Both functional classification as well as network analysis showed that the genes associated with the DM promoters were enriched for WNT-, Cadherin-, Endothelin-, PDGF-, HIF-1 and VEGF- signaling implicated in valvular physiology and pathophysiology. Additional enrichment was detected for TGFB-, NOTCH- and Integrin- signaling involved in EMT as well as ECM remodeling. This data provides the first insight into differential regulation of human aortic and mitral valve tissue and identifies candidate genes linked to DM promoters. Our work will improve the understanding of valve biology, valve tissue engineering approaches and contributes to the identification of relevant drug targets.

9.
Front Cardiovasc Med ; 9: 793666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369286

RESUMO

Objective: We have previously reported that human calcified aortic cusps have abundant expression of smooth muscle (SM) markers and co-activators. We hypothesised that cells in bicuspid aortic valve (BAV) cusps and those affected by rheumatic heart valve (RHV) disease may follow a similar phenotypic transition into smooth muscle cells, a process that could be regulated by transforming growth factors (TGFs). Aims: Cusps from eight patients with BAV and seven patients with RHV were analysed for early and late SM markers and regulators of SM gene expression by immunocytochemistry and compared to healthy aortic valves from 12 unused heart valve donors. The ability of TGFs to induce these markers in valve endothelial cells (VECs) on two substrates was assessed. Results: In total, 7 out of 8 BAVs and all the RHVs showed an increased and atypical expression of early and late SM markers α-SMA, calponin, SM22 and SM-myosin. The SM marker co-activators were aberrantly expressed in six of the BAV and six of the RHV, in a similar regional pattern to the expression of SM markers. Additionally, regions of VECs, and endothelial cells lining the vessels within the cusps were found to be positive for SM markers and co-activators in three BAV and six RHV. Both BAVs and RHVs were significantly thickened and HIF1α expression was prominent in four BAVs and one RHV. The ability of TGFßs to induce the expression of SM markers and myocardin was greater in VECs cultured on fibronectin than on gelatin. Fibronectin was shown to be upregulated in BAVs and RHVs, within the cusps as well as in the basement membrane. Conclusion: Bicuspid aortic valves and RHVs expressed increased numbers of SM marker-positive VICs and VECs. Concomittantly, these cells expressed MRTF-A and myocardin, key regulators of SM gene expression. TGFß1 was able to preferentially upregulate SM markers and myocardin in VECs on fibronectin, and fibronectin was found to be upregulated in BAVs and RHVs. These findings suggest a role of VEC as a source of cells that express SM cell markers in BAVs and RHVs. The similarity between SM marker expression in BAVs and RHVs with our previous study with cusps from patients with aortic stenosis suggests the existance of a common pathological pathway between these different pathologies.

10.
Am J Physiol Heart Circ Physiol ; 321(5): H933-H939, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597185

RESUMO

CD4+ T cells expressing choline acetyltransferase (ChAT) have recently been shown to cause a drop in systemic blood pressure when infused into mice. The aim of this study was to determine if ChAT-expressing T cells could regulate coronary vascular reactivity. Preconstricted segments of epicardial and intramyocardial porcine coronary arteries relaxed in response to Jurkat T cells (JT) that overexpressed ChAT (JTChAT cells). The efficacy of the JTChAT cells was similar in epicardial and intramyocardial vessels with a maximum dilator response to 3 × 105 cells/mL of 38.0 ± 6.7% and 38.7 ± 7.25%, respectively. In contrast, nontransfected JT cells elicited a weak dilator response, followed by a weak contraction. The response of JTChAT cells was dependent on the presence of the endothelial cells. In addition, the response could be significantly reduced by Nω-nitro-l-arginine methyl ester (l-NAME) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) in the presence of indomethacin. JTChAT cells, but not JT cells, increased the expression of phosphorylated endothelial nitric oxide synthase (eNOS). JTChAT cells contained significantly greater levels of acetylcholine compared with JT cells; however, the nonselective muscarinic antagonist atropine and the M1 receptor antagonist pirenzepine both failed to block the dilator effect of JTChAT cells. Exogenously added acetylcholine induced only a weak relaxation (∼10%) at low concentrations, which became a contractile response at higher concentrations. These data illustrate the capacity for cells that express ChAT to regulate coronary vascular reactivity, via mechanisms that are dependent on interaction with the endothelium and in part mediated by the release of nitric oxide.NEW & NOTEWORTHY This study shows ChAT-expressing T cells can induce vasodilation of the blood vessel in the coronary circulation and that this effect relies on a direct interaction between T cells and the coronary vascular endothelium. The study establishes a potential immunomodulatory role for T cells in the coronary circulation. The present findings offer an additional possibility that a deficiency of ChAT-expressing T cells could contribute to reduced coronary blood flow and ischemic events in the myocardium.


Assuntos
Comunicação Celular , Colina O-Acetiltransferase/metabolismo , Vasos Coronários/enzimologia , Linfócitos T/enzimologia , Vasodilatação , Acetilcolina/metabolismo , Animais , Colina O-Acetiltransferase/genética , Vasos Coronários/imunologia , Células Endoteliais/enzimologia , Células Endoteliais/imunologia , Humanos , Células Jurkat , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Sus scrofa , Linfócitos T/imunologia
11.
BMJ Open ; 11(9): e049006, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593493

RESUMO

OBJECTIVES: Globally, healthcare systems have been stretched to the limit by the COVID-19 pandemic. Significant changes have had to be made to the way in which non-COVID-19-related care has been delivered. Our objective was to understand, from the perspective of patients with a chronic, life-long condition (congenital heart disease, CHD) and their parents/carers, the impact of COVID-19 on the delivery of care, how changes were communicated and whether healthcare providers should do anything differently in a subsequent wave of COVID-19 infections. DESIGN AND SETTING: Qualitative study involving a series of asynchronous discussion forums set up and moderated by three patient charities via their Facebook pages. PARTICIPANTS: Patients with CHD and parents/carers of patients with CHD. MAIN OUTCOME MEASURES: Qualitative responses to questions posted on the discussion forums. RESULTS: The forums ran over a 6-week period and involved 109 participants. Following thematic analysis, we identified three themes and 10 subthemes related to individual condition-related factors, patient-related factors and health professional/centre factors that may have influenced how patients and parents/carers experienced changes to service delivery as a result of COVID-19. Specifically, respondents reported high levels of disruption to the delivery of care, inconsistent advice and messaging and variable communication from health professionals, with examples of both excellent and very poor experiences of care reported. Uncertainty about follow-up and factors related to the complexity and stability of their condition contributed to anxiety and stress. CONCLUSIONS: The importance of clear, consistent communication cannot be over-estimated. Our findings, while collected in relation to patients with CHD, are not necessarily specific to this population and we believe that they reflect the experiences of many thousands of people with life-long conditions in the UK. Recommendations related to communication, service delivery and support during the pandemic may improve patients' experience of care and, potentially, their outcomes.


Assuntos
COVID-19 , Cardiopatias Congênitas , Adulto , Transtornos de Ansiedade , Criança , Cardiopatias Congênitas/terapia , Humanos , Pandemias , SARS-CoV-2
12.
Front Cardiovasc Med ; 8: 734692, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660737

RESUMO

A significant amount of knowledge has been gained with the use of cell-based assays to elucidate the mechanisms that mediate heart valve calcification. However, cells used in these studies lack their association with the extra-cellular matrix or the influence of other cellular components of valve leaflets. We have developed a model of calcification using intact porcine valve leaflets, that relies upon a biological stimulus to drive the formation of calcified nodules within the valve leaflets. Alizarin Red positive regions were formed in response to lipopolysaccharide and inorganic phosphate, which could be quantified when viewed under polarized light. Point analysis and elemental mapping analysis of electron microscope images confirmed the presence of nodules containing calcium and phosphorus. Immunohistochemical staining showed that the development of these calcified regions corresponded with the expression of RUNX2, osteocalcin, NF-kB and the apoptosis marker caspase 3. The formation of calcified nodules and the expression of bone markers were both inhibited by adenosine in a concentration-dependent manner, illustrating that the model is amenable to pharmacological manipulation. This organ culture model offers an increased level of tissue complexity in which to study the mechanisms that are involved in heart valve calcification.

13.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638942

RESUMO

Calcific aortic valve disease (CAVD) is an athero-inflammatory process. Growing evidence supports the inflammation-driven calcification model, mediated by cytokines such as interferons (IFNs) and tumor necrosis factor (TNF)-α. Our goal was investigating IFNs' effects in human aortic valve endothelial cells (VEC) and the potential differences between aortic (aVEC) and ventricular (vVEC) side cells. The endothelial phenotype was analyzed by Western blot, qPCR, ELISA, monocyte adhesion, and migration assays. In mixed VEC populations, IFNs promoted the activation of signal transducers and activators of transcription-1 and nuclear factor-κB, and the subsequent up-regulation of pro-inflammatory molecules. Side-specific VEC were activated with IFN-γ and TNF-α in an orbital shaker flow system. TNF-α, but not IFN-γ, induced hypoxia-inducible factor (HIF)-1α stabilization or endothelial nitric oxide synthase downregulation. Additionally, IFN-γ inhibited TNF-α-induced migration of aVEC. Also, IFN-γ triggered cytokine secretion and adhesion molecule expression in aVEC and vVEC. Finally, aVEC were more prone to cytokine-mediated monocyte adhesion under multiaxial flow conditions as compared with uniaxial flow. In conclusion, IFNs promote inflammation and reduce TNF-α-mediated migration in human VEC. Moreover, monocyte adhesion was higher in inflamed aVEC sheared under multiaxial flow, which may be relevant to understanding the initial stages of CAVD.


Assuntos
Valva Aórtica/metabolismo , Células Endoteliais/metabolismo , Interferon-alfa/farmacologia , Interferon gama/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/imunologia , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/imunologia , Valva Aórtica/patologia , Estenose da Valva Aórtica/imunologia , Calcinose/imunologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Transplante de Coração , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/induzido quimicamente , Inflamação/imunologia , Monócitos/metabolismo , NF-kappa B/metabolismo , Fenótipo , Fator de Transcrição STAT1/metabolismo , Células THP-1 , Transplantados , Fator de Necrose Tumoral alfa/farmacologia
14.
Front Cell Dev Biol ; 9: 706143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291056

RESUMO

Elevated serum concentrations of leucine-rich α-2-glycoprotein (LRG1) have been reported in patients with inflammatory, autoimmune, and cardiovascular diseases. This study aims to investigate the role of LRG1 in endothelial activation. LRG1 in endothelial cells (ECs) of arteries and serum of patients with critical limb ischemia (CLI) was assessed by immunohistochemistry and ELISA, respectively. LRG1 expression in sheared and tumor necrosis factor-α (TNF-α)-treated ECs was analyzed. The mechanistic role of LRG1 in endothelial activation was studied in vitro. Plasma of 37-week-old Lrg1 -/- mice was used to investigate causality between LRG1 and tumor necrosis factor receptor 1 (TNFR1) shedding. LRG1 was highly expressed in ECs of stenotic but not normal arteries. LRG1 concentrations in serum of patients with CLI were elevated compared to healthy controls. LRG1 expression was shear dependent. It could be induced by TNF-α, and the induction of its expression was mediated by NF-κB activation. LRG1 inhibited TNF-α-induced activation of NF-κB signaling, expression of VCAM-1 and ICAM-1, and monocyte capture, firm adhesion, and transendothelial migration. Mechanistically, LRG1 exerted its function by causing the shedding of TNFR1 via the ALK5-SMAD2 pathway and the subsequent activation of ADAM10. Consistent with this mechanism, LRG1 and sTNFR1 concentrations were correlated in the serum of CLI patients. Causality between LRG1 and TNFR1 shedding was established by showing that Lrg1 -/- mice had lower plasma sTNFR1 concentrations than wild type mice. Our results demonstrate a novel role for LRG1 in endothelial activation and its potential therapeutic role in inflammatory diseases should be investigated further.

15.
PLoS One ; 15(10): e0240532, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057457

RESUMO

BACKGROUND: The ability of heart valve cells to respond to their mechanical environment represents a key mechanism by which the integrity and function of valve cusps is maintained. A number of different mechanotransduction pathways have been implicated in the response of valve cells to mechanical stimulation. In this study, we explore the expression pattern of several mechanosensitive ion channels (MSC) and their potential to mediate mechanosensitive responses of human valve interstitial cells (VIC). METHODS: MSC presence and function were probed using the patch clamp technique. Protein abundance of key MSC was evaluated by Western blotting in isolated fibroblastic VIC (VICFB) and in VIC differentiated towards myofibroblastic (VICMB) or osteoblastic (VICOB) phenotypes. Expression was compared in non-calcified and calcified human aortic valves. MSC contributions to stretch-induced collagen gene expression and to VIC migration were assessed by pharmacological inhibition of specific channels. RESULTS: Two MSC types were recorded in VICFB: potassium selective and cation non-selective channels. In keeping with functional data, the presence of both TREK-1 and Kir6.1 (potassium selective), as well as TRPM4, TRPV4 and TRPC6 (cationic non-selective) channels was confirmed in VIC at the protein level. Differentiation of VICFB into VICMB or VICOB phenotypes was associated with a lower expression of TREK-1 and Kir6.1, and a higher expression of TRPV4 and TRPC6. Differences in MSC expression were also seen in non-calcified vs calcified aortic valves where TREK-1, TRPM4 and TRPV4 expression were higher in calcified compared to control tissues. Cyclic stretch-induced expression of COL I mRNA in cultured VICFB was blocked by RN-9893, a selective inhibitor of TRPV4 channels while having no effect on the stretch-induced expression of COL III. VICFB migration was blocked with the non-specific MSC blocker streptomycin and by GSK417651A an inhibitor of TRPC6/3. CONCLUSION: Aortic VIC express a range of MSC that play a role in functional responses of these cells to mechanical stimulation. MSC expression levels differ in calcified and non-calcified valves in ways that are in part compatible with the change in expression seen between VIC phenotypes. These changes in MSC expression, and associated alterations in the ability of VIC to respond to their mechanical environment, may form novel targets for intervention during aortic valvulopathies.


Assuntos
Estenose da Valva Aórtica/patologia , Valva Aórtica/patologia , Calcinose/patologia , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Miofibroblastos/metabolismo , Osteoblastos/metabolismo , Valva Aórtica/citologia , Estenose da Valva Aórtica/tratamento farmacológico , Calcinose/tratamento farmacológico , Diferenciação Celular , Células Cultivadas , Humanos , Canais Iônicos/antagonistas & inibidores , Mecanotransdução Celular/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Cultura Primária de Células , Estreptomicina/farmacologia , Estreptomicina/uso terapêutico
16.
Front Cardiovasc Med ; 7: 63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373630

RESUMO

Over the last 20 years, the designs of tissue engineered heart valves have evolved considerably. An initial focus on replicating the mechanical and structural features of semilunar valves has expanded to endeavors to mimic the biological behavior of heart valve cells as well. Studies on the biology of heart valves have shown that the function and durability of native valves is underpinned by complex interactions between the valve cells, the extracellular matrix, and the mechanical environment in which heart valves function. The ability of valve interstitial cells to synthesize extracellular matrix proteins and remodeling enzymes and the protective mediators released by endothelial cells are key factors in the homeostasis of valve function. The extracellular matrix provides the mechanical strength and flexibility required for the valve to function, as well as communicating with the cells that are bound within. There are a number of regulatory mechanisms that influence valve function, which include neuronal mechanisms and the tight regulation of growth and angiogenic factors. Together, studies into valve biology have provided a blueprint for what a tissue engineered valve would need to be capable of, in order to truly match the function of the native valve. This review addresses the biological functions of heart valve cells, in addition to the influence of the cells' environment on this behavior and examines how well these functions are addressed within the current strategies for tissue engineering heart valves in vitro, in vivo, and in situ.

17.
Cardiovasc Pathol ; 36: 53-63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30056298

RESUMO

BACKGROUND: The calcific aortic valve disease (CAVD) is a common heart pathology that involves inflammation, fibrosis, and calcification of aortic valve leaflets. All these processes could be affected by changes in the extracellular purinergic signaling that depend on the activity of ectonucleotidases, mainly ectonucleoside triphosphate diphosphohydrolase 1 (CD39, eNTPD1) and ecto-5'nucleotidase (CD73, e5NT). OBJECTIVE AND METHODS: We investigated the localization of CD39 and CD73 proteins in human noncalcified and calcified aortic valves using immunohistochemistry together with analysis of NTPDases and e5NT activities in aortic valve homogenates by analysis of substrate into product conversion by high-performance liquid chromatography. We also measured the rates of extracellular nucleotide catabolism on the surface of isolated cultured aortic valve endothelial (hAVECs) and interstitial cells (hAVICs) as well as characterized cellular CD39 and CD73 distribution. RESULTS: In noncalcified valves, CD39 and CD73 were expressed in both endothelial and interstitial cells, while in calcified valves, the expressions of CD39 and CD73 were significantly down-regulated with the exception of calcified regions where the expression of CD73 was maintained. This correlated with activities in valve homogenates. NTPDase was reduced by 35% and e5NT activity by 50% in calcified vs. noncalcified valve. CD39 and CD73 were present mainly in the cell membrane of hAVECs, but in hAVICs, these proteins were also present intracellularly. The rates of extracellular adenosine triphosphate and adenosine monophosphate hydrolysis in isolated hAVECs and hAVICs were comparable. CONCLUSION: The presence of ectonucleotidases in valves and especially in aortic valve interstitial cells highlights important local role of purinergic signaling and metabolism. Changes in the local expression and hence the activity of CD39 and CD73 in calcified valves suggest their potential role in CAVD.


Assuntos
5'-Nucleotidase/metabolismo , Valva Aórtica/enzimologia , Apirase/metabolismo , Calcinose/enzimologia , Doenças das Valvas Cardíacas/enzimologia , Imuno-Histoquímica , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Idoso , Valva Aórtica/patologia , Calcinose/patologia , Células Cultivadas , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Feminino , Proteínas Ligadas por GPI/metabolismo , Doenças das Valvas Cardíacas/patologia , Humanos , Hidrólise , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Cardiovasc Eng Technol ; 9(2): 151-157, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-27709350

RESUMO

Responses of valve endothelial cells (VECs) to shear stresses are important for the regulation of valve durability. However, the effect of flow patterns subjected to VECs on the opposite surfaces of the valves on the production of extracellular matrix (ECM) has not yet been investigated. This study aims to investigate the response of side-specific flow patterns, in terms of ECM synthesis and/or degradation in porcine aortic valves. Aortic and ventricular sides of aortic valve leaflets were exposed to oscillatory and laminar flow generated by a Cone-and-Plate machine for 48 h. The amount of collagen, GAGs and elastin was quantified and compared to samples collected from the same leaflets without exposing to flow. The results demonstrated that flow is important to maintain the amount of GAGs and elastin in the valve, as compared to the effect of static conditions. Particularly, the laminar waveform plays a crucial role on the modulation of elastin in side-independent manner. Furthermore, the ability of oscillatory flow on the aortic surface to increase the amount of collagen and GAGs cannot be replicated by exposure of an identical flow pattern on the ventricular side of the valve. Side-specific responses to the particular patterns of flow are important to the regulation of ECM components. Such understanding is imperative to the creation of tissue-engineered heart valves that must be created from the "appropriate" cells that can replicate the functions of the native VECs to regulate the different constituents of ECM.


Assuntos
Valva Aórtica/metabolismo , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Mecanotransdução Celular , Animais , Valva Aórtica/patologia , Reatores Biológicos , Colágeno/metabolismo , Elastina/metabolismo , Células Endoteliais/patologia , Matriz Extracelular/patologia , Glicosaminoglicanos/metabolismo , Estresse Mecânico , Sus scrofa , Técnicas de Cultura de Tecidos
19.
Tissue Eng Part A ; 24(1-2): 145-156, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28467727

RESUMO

The ability of cells to secrete extracellular matrix proteins is an important property in the repair, replacement, and regeneration of living tissue. Cells that populate tissue-engineered constructs need to be able to emulate these functions. The motifs, KTTKS or palmitoyl-KTTKS (peptide amphiphile), have been shown to stimulate production of collagen and fibronectin in differentiated cells. Molecular modeling was used to design different forms of active peptide motifs to enhance the efficacy of peptides to increase collagen and fibronectin production using terminals KTTKS/SKTTK/SKTTKS connected by various hydrophobic linkers, V4A3/V4A2/A4G3. Molecular dynamic simulations showed SKTTKS-V4A3-SKTTKS (P3), with palindromic (SKTTKS) motifs and SKTTK-V4A2-KTTKS (P5), maintained structural integrity and favorable surface electrostatic distributions that are required for functionality. In vitro studies showed that peptides, P3 and P5, showed low toxicity to human adipose-derived stem cells (hADSCs) and significantly increased the production of collagen and fibronectin in a concentration-dependent manner compared with the original active peptide motif. The 4-day treatment showed that stem cell markers of hADSCs remained stable with P3. The molecular design of novel peptides is a promising strategy for the development of intelligent biomaterials to guide stem cell function for tissue engineering applications.


Assuntos
Matriz Extracelular/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Engenharia Tecidual/métodos , Células Cultivadas , Colágeno/química , Fibronectinas/química , Citometria de Fluxo , Humanos , Peptídeos
20.
Sci Adv ; 3(12): e1701156, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29226241

RESUMO

Medial calcification in the human aorta accumulates during aging and is known to be aggravated in several diseases. Atherosclerosis, another major cause of cardiovascular calcification, shares some common aggravators. However, the mechanisms of cardiovascular calcification remain poorly understood. To elucidate the relationship between medial aortic calcification and atherosclerosis, we characterized the cross-sectional distributions of the predominant minerals in aortic tissue, apatite and whitlockite, and the associated extracellular matrix. We also compared the cellular changes between atherosclerotic and nonatherosclerotic human aortic tissues. This was achieved through the development of Raman spectroscopy imaging methods that adapted algorithms to distinguish between the major biomolecules present within these tissues. We present a relationship between apatite, cholesterol, and triglyceride in atherosclerosis, with the relative amount of all molecules concurrently increased in the atherosclerotic plaque. Further, the increase in apatite was disproportionately large in relation to whitlockite in the aortic media directly underlying a plaque, indicating that apatite is more pathologically significant in atherosclerosis-aggravated medial calcification. We also discovered a reduction of ß-carotene in the whole aortic intima, including a plaque in atherosclerotic aortic tissues compared to nonatherosclerotic tissues. This unprecedented biomolecular characterization of the aortic tissue furthers our understanding of pathological and physiological cardiovascular calcification events in humans.


Assuntos
Aorta/diagnóstico por imagem , Aterosclerose/diagnóstico por imagem , Calcificação Vascular/diagnóstico por imagem , Adolescente , Adulto , Idoso , Aorta/química , Aorta/patologia , Apatitas/análise , Aterosclerose/patologia , Fosfatos de Cálcio/análise , Estudos de Casos e Controles , Colesterol/análise , Ésteres do Colesterol/análise , Humanos , Pessoa de Meia-Idade , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Análise Espectral Raman , Triglicerídeos/análise , Túnica Íntima/química , Túnica Íntima/diagnóstico por imagem , beta Caroteno/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA