Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Dent Mater ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38755041

RESUMO

Development of restorative materials capable of mimicking optical and mechanical performance of natural teeth is a quest in aesthetic density. Yttria-Stabilized Zirconia (YSZ) ceramics represent one of the most popular choices for dental restorations, owing to their biocompatibility, white colour, and the possibility to use CAD-CAM technologies. In particular, YSZ doped with 3 mol. % yttria (3YSZ) is popular because it presents high strength. Nonetheless, the limited light transmission of commercially available high strength 3YSZ does not meet the requirements of highly aesthetic cases. On the other side, YSZ presenting a larger portion of yttria are more translucent but exhibit modest strength. Here, we report on fabrication of dense zirconia nanostructures in bulk form via conventional pressure-less sintering at temperatures down to 1100-1200 °C, achieving highly translucent and strong 3YSZ with significant opalescent behaviour. Both Hall-Petch and inverse Hall-Petch relationship were observed in 3YSZ samples with average grain size in the range of 250 nm and 55 nm, demonstrating the importance of grain size control to enhance both optical and mechanical properties of zirconia ceramics, simultaneously. Maximum biaxial strength of 1980 ± 260 MPa, in-line light transmission of 38% in the visible spectrum and opalescence approaching that of enamel were obtained at optimum grain size of 80 ± 5 nm. The notable optical properties are linked to the miniaturization of the residual pores and refinement of grain size towards the nanoscale while the superior mechanical strength is justified by the activation of different energy dissipation processes at nano and macroscale.

2.
Acta Biomater ; 175: 411-421, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135205

RESUMO

Due to their outstanding elastic limit, biocompatible Ti-based bulk metallic glasses (BMGs) are candidate materials to decrease the size of medical implants and therefore reduce their invasiveness. However, the practical use of classical Ti-BMGs in medical applications is in part hindered by their high copper content: more effort is thus required to design low-copper Ti-BMGs. In this work, in line with current rise in AI-driven tools, machine learning (ML) approaches, a neural-network ML model is used to explore the glass-forming ability (GFA) of unreported low-copper compositions within the biocompatible Ti-Zr-Cu-Pd system. Two types of models are trained and compared: one based on the alloy composition only, and a second based on various features derived from the alloying elements. Contrary to expectation, the predictive power of both models in evaluating GFA is similar. The compositional space identified by ML as promising is experimentally assessed, finding unfortunately low GFA. These results indicate that the ML approach may be premature for specific composition tuning of amorphous metallic materials. We emphasise that the development of ML tools in GFA prediction requires an improvement of the dataset, in terms of homogeneity, size and GFA descriptors, which must be supported by increased reporting of high-quality experimental GFA measurements, both positive and negative. STATEMENT OF SIGNIFICANCE: Biocompatible Ti-based bulk metallic glasses (BMGs) are candidate materials for use in the next generation of minimally invasive dental implants where improved mechanical properties, such as high strength are required. Despite promising in vitro/vivo evaluations, implementation of alloys for practical applications is partly hindered by the presence of copper as the main alloying element. Recent studies have presented AI-guided and machine learning strategies as appealing approaches to understand and describe the glass forming ability (GFA) of BMG-forming compositions. In this work, we employ and evaluate the capacity of a machine-learning model to explore low-copper compositional spaces in the biocompatible Ti-Zr-Cu-Pd system. Our results highlight the limits of such a computational approach and suggest improvements for future designing routes.


Assuntos
Cobre , Titânio , Vidro , Ligas , Próteses e Implantes , Materiais Biocompatíveis
4.
J Funct Biomater ; 14(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36826915

RESUMO

The intention of this 5-year prospective cohort investigation was to clinically and radiographically investigate the outcomes of a one-piece zirconia implant system for single tooth replacement. Sixty-five patients received a total of 66 single-tooth implants. All implants immediately received temporary restorations and were finally restored with all-ceramic crowns. Follow-ups were performed at the prosthetic delivery, after 1, 3, and 5 years. Peri-implant and dental soft-tissue parameters were evaluated and patient-reported outcomes recorded. To monitor peri-implant bone remodelling, standardised radiographs were taken at the implant insertion and at the 1-, 3-, and 5-year follow-ups. In the course of 5 years, 14 implants were lost, resulting in a cumulative implant survival rate of 78.2%. The mean marginal bone loss from the implant insertion to the 5-year follow-up amounted to 1.12 mm. Probing depth, clinical attachment level, bleeding, and plaque index increased over time. In 91.5% of the implants, the papilla index showed levels of 1 or 2, respectively. At the end of the study, the patient satisfaction was higher compared to the pre-treatment measurements. Due to the low survival rate after five years and the noticeably high frequency of advanced bone loss observed in this study, the implant has not met the launch criteria, as it would have not been recommended for routine clinical use.

5.
Dent Mater ; 38(9): 1459-1469, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798578

RESUMO

OBJECTIVE: To evaluate the manufacturing accuracy of zirconia four-unit fixed dental prostheses (FDPs) fabricated by three different additive manufacturing technologies compared with subtractive manufacturing. METHODS: A total of 79 zirconia FDPs were produced by three different manufacturing technologies, representing additive (one stereolithography [aSLA] and one material jetting [aMJ] device, two digital light processing [aDLP1/aDLP2] devices) and subtractive manufacturing (two devices [s1/s2]), the latter serving as references. After printing, additively manufactured FDPs were debound and finally sintered. Subsequently, samples were circumferentially digitized and acquired surface areas were split in three Regions Of Interest (ROIs: inner/outer shell, margin). Design and acquired data were compared for accuracy using an inspection software. Statistical evaluation was performed using the root mean square error (RMSE) and nonparametric Kruskal-Wallis method with post hoc Wilcoxon-Mann-Whitney U tests. Bonferroni correction was applied in case of multiple testing. RESULTS: Regardless the ROI, significant differences were observed between manufacturing technologies (P < 0.001). Subtractive manufacturing was the most accurate with no significant difference regarding the material/device (s1/s2, P > 0.054). Likewise, no statistical difference regarding accurary was found when comparing s2 with aMJ and aSLA in most ROIs (P > 0.085). In general, mean surface deviation was< 50 µm for s1/s2 and aMJ and< 100 µm for aSLA and aDLP2. aDLP1 showed surface deviations> 100 µm and was the least accurate compared to the other additive/subtractive technologies. SIGNIFICANCE: Additive manufacturing represents a promising set of technologies for the manufacturing of zirconia FDPs, but not yet as accurate as subtractive manufacturing. Methodological impact on accuracy within and in between different additive technologies needs to be further investigated.


Assuntos
Planejamento de Prótese Dentária , Estereolitografia , Desenho Assistido por Computador , Zircônio
6.
Small ; 17(42): e2102486, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34523224

RESUMO

Two-photon lithography is a potential route to produce high-resolution 3D ceramics. However, the large shrinkage due to the elimination of an important organic counterpart of the printed material during debinding/sintering remains a lock to further development of this technology. To limit this phenomenon, an original approach based on a composite resin incorporating 45 wt% ultrasmall (5 nm) zirconia stabilized nanoparticles into the zirconium acrylate precursor is proposed to process 3D zirconia microlattices and nanostructured optical surfaces. Interestingly, the nanoparticles are used both as seeds allowing control of the crystallographic phase formed during the calcination process and as structural stabilizing agent preventing important shrinkage of the printed ceramic. After 3D photolithography and pyrolysis, the weight and volume loss of the microstructures are drastically reduced as compared to similar systems processed with the reference resin without nanoparticles, and stable 3D microstructures of cubic zirconia are obtained with high spatial resolution. In the case of a patterned surface, the refractive index of 2.1 leads to a diffraction efficiency large enough to obtain microfocusing with linewidths of 0.1 µm, and the demonstration of a microlens array with a period as small as 0.8 µm.


Assuntos
Nanopartículas , Nanoestruturas , Cerâmica , Cristalização , Teste de Materiais , Impressão Tridimensional , Pirólise , Propriedades de Superfície , Zircônio
7.
Polymers (Basel) ; 13(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34503031

RESUMO

Poly(l-lactide-co-d,l-lactide) PDLA/45S5 Bioglass® (BG) composites for medical devices were developed using an original approach based on a thermal treatment of BG prior to processing. The aim of the present work is to gain a fundamental understanding of the relationships between the morphology, processing conditions and final properties of these biomaterials. A rheological study was performed to evaluate and model the PDLA/BG degradation during processing. The filler contents, as well as their thermal treatments, were investigated. The degradation of PDLA was also investigated by Fourier transform infrared (FTIR) spectroscopy, size-exclusion chromatography (SEC) and mechanical characterization. The results highlight the value of thermally treating the BG in order to control the degradation of the polymer during the process. The present work provides a guideline for obtaining composites with a well-controlled particle dispersion, optimized mechanical properties and limited degradation of the PDLA matrix.

8.
J Adhes Dent ; 23(4): 297-308, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34269540

RESUMO

Different kinds of interactions between the restorative material and mineralized dental tissues result in secondary caries around dental composites. Of these, the mechanical interactions have to be carefully investigated. Due to the elastic mismatch between dental tissues and the composite restoration, complex stresses and strains develop at their interface. This complex mechanical environment disturbs the demineralization-remineralization equilibrium of dental hard tissues. The fluid flow both over and within enamel and dentin, associated with their complex ultrastructure and mechanical behavior, is a key factor. It is known that external mechanical loading can indirectly promote the dissolution of enamel and dentin through a pumping action of cariogenic fluids in and out of microgaps at the interface between mineralized tissues and composite. Mechanical loading can also directly influence the physicochemical behavior of dental hard tissues by inducing complex strain and stress fields on the crystal scale. It is important to consider both the direct and indirect paths by which mechanical loading can influence the apatite dissolution kinetics. Therefore, a systematic approach should be used to investigate the mechanism of secondary caries formation considering the tooth-composite interface as a unique complex in which each element has an influence on the other.


Assuntos
Resinas Compostas , Cárie Dentária , Cárie Dentária/etiologia , Suscetibilidade à Cárie Dentária , Esmalte Dentário , Materiais Dentários , Restauração Dentária Permanente , Dentina , Humanos
9.
Dent Mater ; 37(9): 1377-1389, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34238605

RESUMO

OBJECTIVE: Healing of soft tissues and improvement of aesthetics have become major research objectives in implantology and renewed the interest for ceramics implants. The aim of this study was to evaluate the pre-clinical performance of screw-shaped sandblasted-etched implants processed from an innovative zirconia-based ceramic composite, in comparison to titanium. METHODS: Twenty-four ceramic and twenty-four titanium screw-shaped sandblasted-etched dental implants were tested in a split-mouth design in six Beagle dogs. Surface topographies were investigated by confocal microscopy. Local tissue effects were evaluated at 4 and 13 weeks after implantation through histology. An ANOVA statistical analysis (5% risk; p < 0.05) was performed to compare peri-implant quantitative histomorphometric parameters on buccal and lingual sides, including Bone to Implant Contact (BIC) among test groups and time-periods. RESULTS: Titanium and ceramic implants presented respectively moderate and minimal roughness. After 4 and 13 weeks, ceramic implants showed an inflammatory tissue response close to titanium implants. At both period of time there was no significant difference between the titanium and ceramic groups in terms of BIC values (mean ± SD) at the lingual or buccal sides or when combining buccal + lingual BIC values (respectively for titanium and ceramic, 68.4 ± 14.7 % and 75.0 ± 13.5 % at 4 weeks, and 92.0 ± 8.6 % and 86.1 ± 13.8 % at 13 weeks). SIGNIFICANCE: Within the limits of the present study, it can be concluded that newly developed zirconia-based ceramic composite dental implants have similar biocompatibility and osseointegration to those observed in titanium implants. These pre-clinical results corroborate the potential for the use of these new zirconia-based ceramics in oral implantology.


Assuntos
Implantes Dentários , Animais , Cerâmica , Implantação Dentária Endóssea , Planejamento de Prótese Dentária , Cães , Osseointegração , Propriedades de Superfície , Titânio , Zircônio
10.
Neuroimage ; 234: 117921, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33722670

RESUMO

In brain imaging, decoding is widely used to infer relationships between brain and cognition, or to craft brain-imaging biomarkers of pathologies. Yet, standard decoding procedures do not come with statistical guarantees, and thus do not give confidence bounds to interpret the pattern maps that they produce. Indeed, in whole-brain decoding settings, the number of explanatory variables is much greater than the number of samples, hence classical statistical inference methodology cannot be applied. Specifically, the standard practice that consists in thresholding decoding maps is not a correct inference procedure. We contribute a new statistical-testing framework for this type of inference. To overcome the statistical inefficiency of voxel-level control, we generalize the Family Wise Error Rate (FWER) to account for a spatial tolerance δ, introducing the δ-Family Wise Error Rate (δ-FWER). Then, we present a decoding procedure that can control the δ-FWER: the Ensemble of Clustered Desparsified Lasso (EnCluDL), a procedure for multivariate statistical inference on high-dimensional structured data. We evaluate the statistical properties of EnCluDL with a thorough empirical study, along with three alternative procedures including decoder map thresholding. We show that EnCluDL exhibits the best recovery properties while ensuring the expected statistical control.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Análise de Dados , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Desempenho Psicomotor/fisiologia
11.
Acta Biomater ; 125: 322-332, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33631396

RESUMO

Micro-extrusion-based 3D printing of complex geometrical and porous calcium phosphate (CaP) can improve treatment of bone defects through the production of personalized bone substitutes. However, achieving printing and post-printing shape stabilities for the efficient fabrication and application of rapid hardening protocol are still challenging. In this work, the coaxial printing of a self-setting CaP cement with water and ethanol mixtures aiming to increase the ink yield stress upon extrusion and the stability of fabricated structures was explored. Printing height of overhang structure was doubled when aqueous solvents were used and a 2 log increase of the stiffness was achieved post-printing. A standard and fast steam sterilization protocol applied as hardening step on the coaxial printed CaP cement (CPC) ink resulted in constructs with 4 to 5 times higher compressive moduli in comparison to extrusion process in the absence of solvent. This improved mechanical performance is likely due to rapid CPC setting, preventing cracks formation during hardening process. Thus, coaxial micro-extrusion-based 3D printing of a CPC ink with aqueous solvent enhances printability and allows the use of the widespread steam sterilization cycle as a standalone post-processing technique for production of 3D printed personalized CaP bone substitutes. STATEMENT OF SIGNIFICANCE: Coaxial micro-extrusion-based 3D printing of a self-setting CaP cement with water:ethanol mixtures increased the ink yield stress upon extrusion and the stability of fabricated structures. Printing height of overhang structure was doubled when aqueous solvents were used, and a 2 orders of magnitude log increase of the stiffness was achieved post-printing. A fast hardening step consisting of a standard steam sterilization was applied. Four to 5 times higher compressive moduli was obtained for hardened coaxially printed constructs. This improved mechanical performance is likely due to rapid CPC setting in the coaxial printing, preventing cracks formation during hardening process.


Assuntos
Tinta , Alicerces Teciduais , Fosfatos de Cálcio , Impressão Tridimensional , Solventes , Água
12.
J Mech Behav Biomed Mater ; 110: 103967, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32851978

RESUMO

Zirconia implants are appreciated in some clinical indications in light of their aesthetic appearance and good biocompatibility. The aim of this work was to evaluate the performance of a newly developed two-piece zirconia/polyether ketone ketone (PEKK) implant-abutment combination after long-term cyclic loading in a hydrothermal environment, using a new protocol adapted from two available ISO standards. Sixteen implants (n = 8/group) were embedded according to ISO 14801 and divided into two groups: implants in the Observational Group (OG) were cyclically loaded for 60 days (98 N, 10 million loading cycles, 2 Hz) in 85 °C water in a chewing simulator, while non-loaded/non-aged implants (as-received) constituted the Control Group (CG). After 4.7 million loading cycles, one OG implant fractured in the chewing simulator. The surviving implants were compared to CG implants by X-ray diffraction (XRD) to investigate potential ageing as suggested by ISO 13356, but also µ-Raman spectroscopy, Focused-Ion-Beam - Scanning-Electron-Microscopy (FIB-SEM), and load-to-fracture. Ageing was shown to have limited influence on the evaluated zirconia implant, with increased monoclinic content after loading/ageing being to a shallow transformed zone of ~2 µm at the implant surface. However, OG implants showed a significantly decreased fracture load of 751 ± 231 N (CG: 995 ± 161 N; p = .046). These values enable clinical application, but the fact that one failure was recorded during cyclic fatigue along with the significant decrease in strength after cyclic loading/ageing suggest that there may be room for further optimization of especially the PEKK abutment. Furthermore, good agreement was observed between the fracture modes of the implant that failed during the cyclic fatigue experiment and the in vivo failure of one implant during pre-clinical trials, validating the interest of the in vitro protocol used in this work to check the reliability of zirconia implant.


Assuntos
Implantes Dentários , Cetonas , Falha de Restauração Dentária , Análise do Estresse Dentário , Teste de Materiais , Reprodutibilidade dos Testes , Titânio , Zircônio
13.
J Mech Behav Biomed Mater ; 101: 103423, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536885

RESUMO

OBJECTIVE: To evaluate the effect of artificial aging on the mechanical resistance and micromechanical properties of commercially and noncommercially available zirconia dental implants. METHODS: Scanning electron microscopy (SEM) and X-ray computed tomography (X-CT) were performed on implant systems including: Z-systems®, Straumann®, Zibone® and commercially and non-commercially available TAV dental® with varying grain sizes. Accelerated aging was performed at 134 °C and 2-bar pressure for 30 hours. Before and after aging, the mechanical load to failure was investigated and the bending moments were calculated. Nanoindentation responses of the representative Zibone implant before and after aging were performed to evaluate the effects of aging on hardness (H) and Young's modulus (E). A two-sample t-test statistical analysis was used to determine significant differences of bending moments within groups. RESULTS: All implants presented with compact and homogenous core structures without porosities. The bending moment was significantly increased after aging for all groups (P ≤ 0.05) except for Z-systems (significant decrease (P = 0.022)) and TAV group 3 (no significant increase (P = 0.181)). The increase in bending moment was less pronounced with increasing grain size in TAV groups (group 1: P = 0.036, group 2: P = 0.05, group 3: P = 0.18). E and H were reduced approximately 32% and 18% respectively following aging within the transformed, microcracked zone of the presentative Zibone implant. CONCLUSIONS: Aging led to both increase and decrease of the mechanical properties of the implant systems analyzed. The apparent contrast amongst groups can be explained based on differences in grain sizes and surface features. Aging decreased micromechanical properties of one implant system which warrants further investigation.


Assuntos
Implantes Dentários , Fenômenos Mecânicos , Zircônio , Módulo de Elasticidade , Dureza , Testes Mecânicos , Propriedades de Superfície , Fatores de Tempo
14.
Dent Mater ; 35(12): 1776-1790, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31727445

RESUMO

OBJECTIVES: To evaluate two-body wear of three zirconia ceramics stabilized with 3, 4 and 5mol% yttria and to compare their wear behavior with that of a lithium-disilicate glass-ceramic. METHODS: Sixteen rectangular-shaped specimens made from three grades of zirconia ceramics and a lithium-disilicate glass-ceramic were polished and dynamically loaded in a chewing simulator (2kg vertical load, 2.1Hz) under water at 90°C for 1.2×106 cycles (about 7 days) in the ball-on-plate mode against steatite antagonists. Surface roughness was measured before and after wear testing. Wear tracks were scanned with a non-contact 3D profilometer and super-impositions were used to determine wear loss of the antagonists. Wear surfaces were imaged by SEM. XRD and micro-Raman spectroscopy were used to characterize phase transformation and stress status in the worn and unworn areas of the zirconia ceramics. RESULTS: Independent of fracture toughness, strength and aging-susceptibility, the three zirconia ceramics showed a similar and limited amount of wear (∼10µm in depth) and were more wear-resistant than the lithium-disilicate glass-ceramic (∼880µm in depth). Abrasive wear without obvious cracks was observed for all investigated zirconias, whereas the glass-ceramic with a lower fatigue threshold and high susceptibility to surface dissolution exhibited significant abrasion, fatigue and corrosion wear. All three zirconia ceramics yielded a lower antagonist wear than the glass-ceramic and no significant differences were found between the zirconia ceramics. SIGNIFICANCE: In the context of this study, high-translucent zirconia ceramics stabilized with a higher yttria content, recently introduced in the dental field, were as wear-resistant and antagonist-friendly as conventional high-strength zirconia and suitable for monolithic restorations.


Assuntos
Porcelana Dentária , Zircônio , Cerâmica , Teste de Materiais , Propriedades de Superfície , Ítrio
15.
Nanomaterials (Basel) ; 9(10)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569589

RESUMO

The objective of this paper is to review the current knowledge on the development of nanostructured zirconia-based ceramics and composites suitable for application in dentistry. Isi Web of Science, Science Direct, Scientific.net databases, and Google were searched electronically for the period of 1980 to the present, matching the keywords "nano" with the keywords: "Zirconia, ZrO2, Y-TZP, and dental, dentistry". A total of 74 papers were found, with the majority coming from Asia, indicating a more active scientific interest on the topic in this geographic area, followed by Europe, South America, and North America. The research shows, even though the scientific activity on nanostructured ceramics was intense in the last fifteen years, the development of fully dense zirconia-based nanoceramics is yet at an initial stage, most of all from the point of view of the clinical applications. It has been demonstrated that nanostructured ceramics can show improved properties because of the reduction of the grain size to the nanoscale. This is also true for zirconia-based nanoceramics, where some improvements in mechanical, optical, as well as resistance in low-temperature degradation have been observed. Potential applications of this class of material in the dental field are discussed, summarizing the results of the latest scientific research.

16.
J Mech Behav Biomed Mater ; 98: 40-47, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185443

RESUMO

Ceramic-on-ceramic bearings in total hip replacement have shown the potential to provide low wear solutions in hip replacement. Assessing the tribological performance of these materials is important to predict their long-term performance in patients. In this study, a methodology was devised to assess the tribological in vitro behaviour of composite ceramics under combined adverse edge loading conditions and accelerated ageing. Two commercial ceramic composites were considered, namely Alumina-Toughened Zirconia (ATZ, ceramys®) and Zirconia-Toughened Alumina (ZTA, symarec®). The bearing couples were studied using the Leeds Mark II hip joint simulator for a total of eight million cycles, the first two million under normal gait (no edge loading) and the following six million cycles with the addition of edge loading conditions driven by medial-lateral separation. The bearing couples underwent hydrothermal ageing using an accelerated protocol in autoclave every million cycles. The influence of edge loading combined with ageing was significant for ATZ bearings, resulting in a slower overall ageing kinetics over the wear stripe than on the control heads. During the autoclave ageing steps, the monoclinic fraction increased more over the wear stripe area than over the unworn area. Both results thus indicated that the monoclinic phase was removed during shocks induced by edge loading. The wear performance of the two materials were similar exhibiting relatively low wear rates and low level of microstructural damage for these clinically relevant adverse conditions.


Assuntos
Artroplastia de Quadril , Cerâmica , Óxido de Alumínio/química , Cerâmica/química , Marcha , Estresse Mecânico , Fatores de Tempo , Suporte de Carga , Zircônio/química
17.
Acta Biomater ; 91: 24-34, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31034947

RESUMO

High strength and translucency are generally not coincident in one restorative material and there is still a continuous development for a better balance between these two properties. Zirconia and lithium-disilicate glass-ceramics are currently the most popular alternatives for monolithic restorations. In this work, the mechanical properties and more important, the slow crack growth (SCG) resistance, which rules long-term durability, were thoroughly studied for three zirconia ceramics stabilized by 3, 4 and 5 mol% yttria in comparison to lithium-disilicate glass-ceramic. Translucency versus strength maps revealed that the more translucent zirconia compositions (i.e. with higher yttria contents) fill the gap between the standard 3 mol% yttria stabilized zirconia (3Y-TZP) and lithium-disilicate. Moreover, increasing yttria content did not always result in lower strength, as values for 3 mol% and 4 mol% yttria were the same. Independent on the yttria contents, all zirconia showed similar relative susceptibility to SCG under static and cyclic conditions and were significantly more SCG-resistant than lithium-disilicate glass ceramic. A concern with higher yttria contents (5 and 4 mol%) however could lie in the higher sensitivity to defects, resulting in a larger scatter in strength. STATEMENT OF SIGNIFICANCE: In addition to the common investigations on the generally reported strength, toughness and translucency, V-KI diagrams (crack velocity versus stress-intensity factor) from fast fracture to threshold for three newly developed zirconia were directly measured by double torsion methods under static and cyclic loading conditions. The crack-growth mechanisms were analyzed in depth. Results were compared with another popular dental ceramic, namely lithium-disilicate glass-ceramic, revealing the pros and cons of polycrystalline and glass-ceramics in terms of long-term durability. This is the first time that V-KI curves are compared for the major ceramic and glass-ceramic used for dental restorations. Strength versus translucency maps for different CAD/CAM dental restorative materials were described, showing the current indication range for zirconia ceramics.


Assuntos
Cerâmica/química , Materiais Dentários/química , Porcelana Dentária/química , Análise do Estresse Dentário , Zircônio/química , Humanos
18.
Acta Biomater ; 89: 391-402, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30831328

RESUMO

The efficiency of calcium phosphate (CaP) bone substitutes can be improved by tuning their resorption rate. The influence of both crystal orientation and ion doping on resorption is here investigated for beta-tricalcium phosphate (ß-TCP). Non-doped and Mg-doped (1 and 6 mol%) sintered ß-TCP samples were immersed in acidic solution (pH 4.4) to mimic the environmental conditions found underneath active osteoclasts. The surfaces of ß-TCP samples were observed after acid-etching and compared to surfaces after osteoclastic resorption assays. ß-TCP grains exhibited similar patterns with characteristic intra-crystalline pillars after acid-etching and after cell-mediated resorption. Electron BackScatter Diffraction analyses, coupled with Scanning Electron Microscopy, Inductively Coupled Plasma-Mass Spectrometry and X-Ray Diffraction, demonstrated the influence of both grain orientation and doping on the process and kinetics of resorption. Grains with c-axis nearly perpendicular to the surface were preferentially etched in non-doped ß-TCP samples, whereas all grains with simple axis (a, b or c) nearly normal to the surface were etched in 6 mol% Mg-doped samples. In addition, both the dissolution rate and the percentage of etched surface were lower in Mg-doped specimens. Finally, the alignment direction of the intra-crystalline pillars was correlated with the preferential direction for dissolution. STATEMENT OF SIGNIFICANCE: The present work focuses on the resorption behavior of calcium phosphate bioceramics. A simple and cost-effective alternative to osteoclast culture was implemented to identify which material features drive resorption. For the first time, it was demonstrated that crystal orientation, measured by Electron Backscatter Diffraction, is the discriminating factor between grains, which resorbed first, and grains, which resorbed slower. It also elucidated how resorption kinetics can be tuned by doping ß-tricalcium phosphate with ions of interest. Doping with magnesium impacted lattice parameters. Therefore, the crystal orientations, which preferentially resorbed, changed, explaining the solubility decrease. These important findings pave the way for the design of optimized bone graft substitutes with tailored resorption kinetics.


Assuntos
Reabsorção Óssea/metabolismo , Fosfatos de Cálcio , Osteoclastos/metabolismo , Animais , Reabsorção Óssea/patologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacocinética , Fosfatos de Cálcio/farmacologia , Magnésio/química , Magnésio/farmacocinética , Magnésio/farmacologia , Espectrometria de Massas , Camundongos , Microscopia Eletrônica de Varredura , Osteoclastos/ultraestrutura , Difração de Raios X
19.
Mater Sci Eng C Mater Biol Appl ; 97: 336-346, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678919

RESUMO

Scaffolds for bone tissue engineering require a combination of bioactivity and bioresorption at the sample surface and high mechanical properties in the bulk. This work presents a novel calcium phosphate (CaP)/polycaprolactone (PCL) scaffold with graded composition and porosity fraction. The scaffold is made of (i) a dense hydroxyapatite (HA)/ß-tricalcium phosphate (ß-TCP) core, (ii) a macroporous HA/ß-TCP transition layer and (iii) a macroporous PCL/(HA/ß-TCP) external layer. The ceramic layers were fabricated by gel-casting whereas the outer composite layer was obtained by a solvent casting/particle leaching process. The microstructure, phase composition and biodegradation of the scaffolds were characterized. The gradient of porosity was clearly obtained whereas the gradation of phase composition was less pronounced. An in vitro dissolution test was performed by immersing the scaffolds in a TRIS solution. The results showed a dissolution phenomenon with possible differentiated mechanisms in the different layers, in relation with the targeted multi-functionality.


Assuntos
Fosfatos de Cálcio/química , Poliésteres/química , Alicerces Teciduais , Materiais Biocompatíveis/química , Cerâmica/química , Microscopia Eletrônica de Varredura , Porosidade , Pós/química , Termogravimetria , Tomografia por Raios X , Difração de Raios X
20.
J Mech Behav Biomed Mater ; 90: 395-403, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30445366

RESUMO

Tetragonal Zirconia Polycrystals (TZP) is attractive for structural biomedical applications because of their excellent mechanical properties at room-temperature, which include high strength, fracture toughness and wear resistance. In this work, zirconia stabilized with Y or Yb or Yb+Nd, all containing 0.5 vol.% Al2O3, were prepared by hot-pressing (HP) at 50-60 MPa and sintered at 1300-1350 °C for 1 h. Microstructural features, phase composition and mechanical properties were investigated. The strength was measured by 4-point bending (4P-B), piston-on-three-balls (P-3B) and three-balls-on-three-balls (3B-3B) biaxial methods. Toughness was determined by indentation strength in bending (ISB). Vickers hardness (Hv) and the Young modulus (E) were also estimated. Preliminary aging behaviour (LTD) was also here considered. Measured biaxial strength was significantly higher (until 1.83 times) than the uniaxial one because of the tetragonal to monoclinic (t-m) zirconia phase transformation which is strongly influenced by the loading configuration. The variation of the strength with the testing method is attributed to the compressive stresses generated by the phase transformation which is particularly favoured under P-3B tests and also to the calculation of the stresses from elastic theories. LTD preliminary tests showed excellent aging resistance of 3Yb-0.5A ceramics.


Assuntos
Cerâmica/química , Fenômenos Mecânicos , Zircônio/química , Óxido de Alumínio/química , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA