Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 13(6): 1299-1305, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28111682

RESUMO

Molecular interactions in thin liquid films, such as the disjoining pressure, are involved in interfacial phenomena such as emulsion and foam stabilization. In this article we show that through light stimulation we can control remotely the disjoining pressure in a thin liquid film stabilized by a photosurfactant. We stabilize a horizontal thin liquid film using a cationic photosurfactant, AzoTAB, bearing an azobenzene moiety on the hydrophobic tail which can switch from a trans to a cis conformation upon light stimulation. As the film is illuminated at specific wavelengths the AzoTAB molecules switch continuously their conformation and consequently their interface affinity. The main consequence of stimulating the film with light is increasing the ratio of cis in the film. This provokes a desorption flux, and an increase in the concentration of free surfactants, as the CMC of the cis isomer is higher than that of the trans isomer. Therefore the electrostatic repulsion between the surfactant layers that stabilize the film decreases, inducing an instability in the film thickness. For films with a thickness between 20 nm and 60 nm, we observe the formation of spherical caps up to 100 µm wide, whose shape is controlled by the competition between surface tension and disjoining pressure. The motion of these caps in the film is restrained by the surface viscosity of the surfactant layers. In addition, for thicknesses below 40 nm and depending on light intensity, we can observe flat stratified islands up to 100 µm wide, with thickness steps corresponding to the size of a surfactant micelle. We suggest that this second instability is due to the oscillation of the disjoining pressure isotherm under light.

2.
Langmuir ; 32(11): 2539-48, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26928121

RESUMO

The kinetics of micelles involving photosensitive surfactants is still not well understood. In this work, we unravel the mechanistic pathways involved in the micelle formation and dissolution of photocontrollable micelles. We focus on the fast self-assembly processes of photosensitive cationic azobenzene-containing surfactants (AzoTMA) that display a change in hydrophobicity induced by a reversible cis-trans conformational transition upon exposure to light. By combining both in situ time-resolved small-angle X-ray scattering (SAXS) and light scattering, we characterized the detailed structure and phase behavior of AzoTMA in mixtures of water and dimethylformamide (DMF). Time-resolved synchrotron SAXS with monochromatic light as a trigger enabled us to observe the nonequilibrium formation and dissolution process of micelles (demicellization) directly on the nanoscale with a time resolution starting from milliseconds. The structural results show that in pure water UV-light illumination leads to a 12% reduction of the aggregation number of the micelles and more than a 50% increase in the critical micelle concentration (CMC). Close to the CMC, adjusted by the addition of DMF, UV light illumination leads to a complete dissolution of the micelles, while shining blue light reverses the process and leads to the reformation of micelles. The UV-triggered dissolution follows a two-step mechanism; the first and rapid (second time scale) release of unimers is followed by a slower decomposition of the micelles (over tens of seconds) as a result of an increase in temperature due to optical absorption. Similarly, the reverse process, i.e., micelle formation, occurs rapidly upon photoconversion to trans conformers under blue light, and micelles are disrupted at long exposure time due to the optical absorption and corresponding increase in temperature. Interestingly, the coexistence of unimers with regular micelles is found at all times, and no other transient assemblies could be detected by SAXS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA