Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36233933

RESUMO

The reuse of industrial waste, such as electric arc furnace dust (EAFD) as reinforcement in aluminum matrix composites (AMC), is still little explored even though it has shown potential to improve the mechanical properties, such as hardness and mechanical strength, of AMCs. To propose a new alternative for EAFD recycling, AA7075-EAFD composites were produced by spark plasma sintering (SPS). The starting powders were prepared by high-energy milling with different weight fractions of EAFD in two particle size ranges added to an AA7075 matrix. SEM shows that the distribution of reinforcement particles in the matrix is homogeneous with no agglomeration of the particles. XRD patterns of initial powders and the SPS-sintered (SPSed) samples suggest that there was no reaction during sintering (no additional peaks were detected). The relative density of all SPSed samples exceeded 96.5%. The Vickers microhardness of the composites tended to increase with increasing EAFD content, increasing from 108 HV (AA7075 without reinforcement) up to 168 HV (56% increase). The maximum microhardness value was obtained when using 15 wt.% EAFD with a particle size smaller than 53 µm (called G1), showing that EAFD presents a promising potential to be applied as reinforcement in AA7075 matrix composites.

2.
Nanomaterials (Basel) ; 11(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34835616

RESUMO

Nanostructured ß-FeSi2 and ß-Fe0.95Co0.05Si2 specimens with a relative density of up to 95% were synthesized by combining a top-down approach and spark plasma sintering. The thermoelectric properties of a 50 nm crystallite size ß-FeSi2 sample were compared to those of an annealed one, and for the former a strong decrease in lattice thermal conductivity and an upshift of the maximum Seebeck's coefficient were shown, resulting in an improvement of the figure of merit by a factor of 1.7 at 670 K. For ß-Fe0.95Co0.05Si2, one observes that the figure of merit is increased by a factor of 1.2 at 723 K between long time annealed and nanostructured samples mainly due to an increase in the phonon scattering and an increase in the point defects. This results in both a decrease in the thermal conductivity to 3.95 W/mK at 330 K and an increase in the power factor to 0.63 mW/mK2 at 723 K.

3.
Materials (Basel) ; 14(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467156

RESUMO

AA7075 aluminum alloy is widely used for several high-technology applications for its high mechanical strength to weight ratio but is still the subject of several studies seeking a further increase in its mechanical properties. A commercial powder is used, either as-received or after ball-milling. Dense AA7075 samples are prepared in one step by Spark Plasma Sintering, at 550 °C with a holding time of 15 min and a uniaxial pressure of 100 MPa. No additional heat treatment is performed. Laser granulometry, X-ray diffraction and optical- and scanning electron microscopy show that both grain size and morphology are preserved in the dense samples, due to the relatively low temperature and short sintering time used. The samples prepared using the ball-milled powder exhibit both higher Vickers microhardness and transverse fracture strength values than those prepared using the raw powder, reflecting the finer microstructure.

4.
J Mater Chem B ; 8(4): 629-635, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31789323

RESUMO

In the field of bone regeneration, some clinical conditions require highly-resorbable, reactive bone substitutes to rapidly initiate tissue neo-formation. In this view, Amorphous Calcium Phosphates (ACP) appear as well suited bioceramics taking into account their high metastability. However, the metastability also leads to difficulties of sintering without transformation into crystalline compounds. In this work, various calcium phosphate samples (co)doped with carbonate (CO32-) and magnesium ions were synthesized by the double decomposition method in alkaline media using ammonium and potassium hydroxide solutions. The obtained amorphous powders possess an exceptionally-high carbonate content up to 18.3 wt%. Spark Plasma Sintering (SPS) at very low temperature (150 °C) was then utilized to consolidate initial powders with the view to preserve their amorphous character. The influence of the introduction of different apatite growth inhibitors such as carbonate (CO32-) and magnesium ions was studied. XRD and FTIR analyses revealed that sintered ceramics generally consisted in highly carbonated low-crystallinity apatites, which are expected to have higher solubility than conventional apatite-based systems. However, most interestingly, modulation of the doping conditions allowed us to retain, for the first time, the amorphous character of ACP powders after SPS. Such consolidated ACP compounds may now be considered as a new family of bioceramics with high metastability allowing the fast release of bioactive ions upon resorption.


Assuntos
Materiais Biocompatíveis/química , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Materiais Biocompatíveis/síntese química , Regeneração Óssea , Substitutos Ósseos/síntese química , Fosfatos de Cálcio/síntese química , Teste de Materiais , Solubilidade , Temperatura
5.
J Mater Sci Mater Med ; 26(8): 223, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26271216

RESUMO

Nanocrystalline calcium phosphate apatites are biomimetic compounds analogous to bone mineral and are at the origin of the bioactivity of most biomaterials used as bone substitutes. Their unique surface reactivity originates from the presence of a hydrated layer containing labile ions (mostly divalent ones). So the setup of 3D biocompatible apatite-based bioceramics exhibiting a high reactivity requests the development of «low¼ temperature consolidation processes such as spark plasma sintering (SPS), in order to preserve the characteristics of the hydrated nanocrystals. However, mechanical performances may still need to be improved for such nanocrystalline apatite bioceramics, especially in view of load-bearing applications. The reinforcement by association with biopolymers represents an appealing approach, while preserving the advantageous biological properties of biomimetic apatites. Herein, we report the preparation of composites based on biomimetic apatite associated with various quantities of microcrystalline cellulose (MCC, 1-20 wt%), a natural fibrous polymer. The SPS-consolidated composites were analyzed from both physicochemical (X-ray diffraction, Fourier transform infrared, solid state NMR) and mechanical (Brazilian test) viewpoints. The preservation of the physicochemical characteristics of apatite and cellulose in the final material was observed. Mechanical properties of the composite materials were found to be directly related to the polymer/apatite ratios and a maximum crushing strength was reached for 10 wt% of MCC.


Assuntos
Apatitas/química , Materiais Biomiméticos/química , Substitutos Ósseos/química , Apatitas/síntese química , Fenômenos Biomecânicos , Materiais Biomiméticos/síntese química , Substitutos Ósseos/síntese química , Cerâmica/síntese química , Cerâmica/química , Humanos , Espectroscopia de Ressonância Magnética , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Gases em Plasma , Difração de Pó , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA