Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Mol Biol Rev ; 88(1): e0019923, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38421302

RESUMO

SUMMARYDeazaguanine modifications play multifaceted roles in the molecular biology of DNA and tRNA, shaping diverse yet essential biological processes, including the nuanced fine-tuning of translation efficiency and the intricate modulation of codon-anticodon interactions. Beyond their roles in translation, deazaguanine modifications contribute to cellular stress resistance, self-nonself discrimination mechanisms, and host evasion defenses, directly modulating the adaptability of living organisms. Deazaguanine moieties extend beyond nucleic acid modifications, manifesting in the structural diversity of biologically active natural products. Their roles in fundamental cellular processes and their presence in biologically active natural products underscore their versatility and pivotal contributions to the intricate web of molecular interactions within living organisms. Here, we discuss the current understanding of the biosynthesis and multifaceted functions of deazaguanines, shedding light on their diverse and dynamic roles in the molecular landscape of life.


Assuntos
Bacteriófagos , Produtos Biológicos , Guanina/análogos & derivados , Anticódon , RNA de Transferência/química , RNA de Transferência/genética , Bactérias/genética
2.
mBio ; 15(3): e0342823, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38329367

RESUMO

Flavobacterium johnsoniae is a ubiquitous soil and rhizosphere bacterium, but despite its abundance, the factors contributing to its success in communities are poorly understood. Using a model microbial community, The Hitchhikers of the Rhizosphere (THOR), we determined the effects of colonization on the fitness of F. johnsoniae in the community. Insertion sequencing, a massively parallel transposon mutant screen, on sterile sand identified 25 genes likely to be important for surface colonization. We constructed in-frame deletions of candidate genes predicted to be involved in cell membrane biogenesis, motility, signal transduction, and transport of amino acids and lipids. All mutants poorly colonized sand, glass, and polystyrene and produced less biofilm than the wild type, indicating the importance of the targeted genes in surface colonization. Eight of the nine colonization-defective mutants were also unable to form motile biofilms or zorbs, thereby suggesting that the affected genes play a role in group movement and linking stationary and motile biofilm formation genetically. Furthermore, we showed that the deletion of colonization genes in F. johnsoniae affected its behavior and survival in THOR on surfaces, suggesting that the same traits are required for success in a multispecies microbial community. Our results provide insight into the mechanisms of surface colonization by F. johnsoniae and form the basis for further understanding its ecology in the rhizosphere. IMPORTANCE: Microbial communities direct key environmental processes through multispecies interactions. Understanding these interactions is vital for manipulating microbiomes to promote health in human, environmental, and agricultural systems. However, microbiome complexity can hinder our understanding of the underlying mechanisms in microbial community interactions. As a first step toward unraveling these interactions, we explored the role of surface colonization in microbial community interactions using The Hitchhikers Of the Rhizosphere (THOR), a genetically tractable model community of three bacterial species, Flavobacterium johnsoniae, Pseudomonas koreensis, and Bacillus cereus. We identified F. johnsoniae genes important for surface colonization in solitary conditions and in the THOR community. Understanding the mechanisms that promote the success of bacteria in microbial communities brings us closer to targeted manipulations to achieve outcomes that benefit agriculture, the environment, and human health.


Assuntos
Promoção da Saúde , Microbiota , Humanos , Areia , Flavobacterium/genética , Proteínas de Bactérias/metabolismo
3.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168313

RESUMO

Actinobacteria, the bacterial phylum most renowned for natural product discovery, has been established as a valuable source for drug discovery and biotechnology but is underrepresented within accessible genome and strain collections. Herein, we introduce the Natural Products Discovery Center (NPDC), featuring 122,449 strains assembled over eight decades, the genomes of the first 8490 NPDC strains (7142 Actinobacteria), and the online NPDC Portal making both strains and genomes publicly available. A comparative survey of RefSeq and NPDC Actinobacteria highlights the taxonomic and biosynthetic diversity within the NPDC collection, including three new genera, hundreds of new species, and ~7000 new gene cluster families. Selected examples demonstrate how the NPDC Portal's strain metadata, genomes, and biosynthetic gene clusters can be leveraged using genome mining approaches. Our findings underscore the ongoing significance of Actinobacteria in natural product discovery, and the NPDC serves as an unparalleled resource for both Actinobacteria strains and genomes.

4.
Adv Microb Physiol ; 83: 309-349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37507161

RESUMO

Natural products are the raw material for drug discovery programmes. Bioactive natural products are used extensively in medicine and agriculture and have found utility as antibiotics, immunosuppressives, anti-cancer drugs and anthelminthics. Remarkably, the natural role and what mechanisms drive evolution of these molecules is relatively poorly understood. The exponential increase in genome and chemical data in recent years, coupled with technical advances in bioinformatics and genetics have enabled progress to be made in understanding the evolution of biosynthetic gene clusters and the products of their enzymatic machinery. Here we discuss the diversity of natural products, incorporating the mechanisms that govern evolution of metabolic pathways and how this can be applied to biosynthetic gene clusters. We build on the nomenclature of natural products in terms of primary, integrated, secondary and specialised metabolism and place this within an ecology-evolutionary-developmental biology framework. This eco-evo-devo framework we believe will help to clarify the nature and use of the term specialised metabolites in the future.


Assuntos
Produtos Biológicos , Redes e Vias Metabólicas/genética , Antibacterianos , Ecologia , Família Multigênica , Vias Biossintéticas/genética
5.
ACS Synth Biol ; 12(7): 1989-2003, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37368499

RESUMO

Genome editing tools, through the disruption of an organism's native genetic material or the introduction of non-native DNA, facilitate functional investigations to link genotypes to phenotypes. Transposons have been instrumental genetic tools in microbiology, enabling genome-wide, randomized disruption of genes and insertions of new genetic elements. Due to this randomness, identifying and isolating particular transposon mutants (i.e., those with modifications at a genetic locus of interest) can be laborious, often requiring one to sift through hundreds or thousands of mutants. Programmable, site-specific targeting of transposons became possible with recently described CRISPR-associated transposase (CASTs) systems, allowing the streamlined recovery of desired mutants in a single step. Like other CRISPR-derived systems, CASTs can be programmed by guide-RNA that is transcribed from short DNA sequence(s). Here, we describe a CAST system and demonstrate its function in bacteria from three classes of Proteobacteria. A dual plasmid strategy is demonstrated: (i) CAST genes are expressed from a broad-host-range replicative plasmid and (ii) guide-RNA and transposon are encoded on a high-copy, suicidal pUC plasmid. Using our CAST system, single-gene disruptions were performed with on-target efficiencies approaching 100% in Beta- and Gammaproteobacteria (Burkholderia thailandensis and Pseudomonas putida, respectively). We also report a peak efficiency of 45% in the Alphaproteobacterium Agrobacterium fabrum. In B. thailandensis, we performed simultaneous co-integration of transposons at two different target sites, demonstrating CAST's utility in multilocus strategies. The CAST system is also capable of high-efficiency large transposon insertion totaling over 11 kbp in all three bacteria tested. Lastly, the dual plasmid system allowed for iterative transposon mutagenesis in all three bacteria without loss of efficiency. Given these iterative capabilities and large payload capacity, this system will be helpful for genome engineering experiments across several fields of research.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Transposases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Transposases/genética , Elementos de DNA Transponíveis/genética , Proteobactérias/genética , Mutagênese/genética , Edição de Genes , Bactérias/genética , RNA , Sistemas CRISPR-Cas/genética
6.
J Am Chem Soc ; 145(1): 58-69, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36535031

RESUMO

Although microbial genomes harbor an abundance of biosynthetic gene clusters, there remain substantial technological gaps that impair the direct correlation of newly discovered gene clusters and their corresponding secondary metabolite products. As an example of one approach designed to minimize or bridge such gaps, we employed hierarchical clustering analysis and principal component analysis (hcapca, whose sole input is MS data) to prioritize 109 marine Micromonospora strains and ultimately identify novel strain WMMB482 as a candidate for in-depth "metabologenomics" analysis following its prioritization. Highlighting the power of current MS-based technologies, not only did hcapca enable the discovery of one new, nonribosomal peptide bearing an incredible diversity of unique functional groups, but metabolomics for WMMB482 unveiled 16 additional congeners via the application of Global Natural Product Social molecular networking (GNPS), herein named ecteinamines A-Q (1-17). The ecteinamines possess an unprecedented skeleton housing a host of uncommon functionalities including a menaquinone pathway-derived 2-naphthoate moiety, 4-methyloxazoline, the first example of a naturally occurring Ψ[CH2NH] "reduced amide", a methylsulfinyl moiety, and a d-cysteinyl residue that appears to derive from a unique noncanonical epimerase domain. Extensive in silico analysis of the ecteinamine (ect) biosynthetic gene cluster and stable isotope-feeding experiments helped illuminate the novel enzymology driving ecteinamine assembly as well the role of cluster collaborations or "duets" in producing such structurally complex agents. Finally, ecteinamines were found to bind nickel, cobalt, zinc, and copper, suggesting a possible biological role as broad-spectrum metallophores.


Assuntos
Produtos Biológicos , Micromonospora , Micromonospora/genética , Genômica , Metabolômica , Peptídeos/metabolismo , Família Multigênica , Produtos Biológicos/metabolismo
7.
Nucleic Acids Res ; 51(D1): D603-D610, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399496

RESUMO

With an ever-increasing amount of (meta)genomic data being deposited in sequence databases, (meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC. We simultaneously constructed an accompanying online database of BGCs, which has since been widely used by the community as a reference dataset for BGCs and was expanded to 2021 entries in 2019 (MIBiG 2.0). Here, we describe MIBiG 3.0, a database update comprising large-scale validation and re-annotation of existing entries and 661 new entries. Particular attention was paid to the annotation of compound structures and biological activities, as well as protein domain selectivities. Together, these new features keep the database up-to-date, and will provide new opportunities for the scientific community to use its freely available data, e.g. for the training of new machine learning models to predict sequence-structure-function relationships for diverse natural products. MIBiG 3.0 is accessible online at https://mibig.secondarymetabolites.org/.


Assuntos
Genoma , Genômica , Família Multigênica , Vias Biossintéticas/genética
8.
Proc Natl Acad Sci U S A ; 119(51): e2213096119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508678

RESUMO

Fungi shape the diversity of life. Characterizing the evolution of fungi is critical to understanding symbiotic associations across kingdoms. In this study, we investigate the genomic and metabolomic diversity of the genus Escovopsis, a specialized parasite of fungus-growing ant gardens. Based on 25 high-quality draft genomes, we show that Escovopsis forms a monophyletic group arising from a mycoparasitic fungal ancestor 61.82 million years ago (Mya). Across the evolutionary history of fungus-growing ants, the dates of origin of most clades of Escovopsis correspond to the dates of origin of the fungus-growing ants whose gardens they parasitize. We reveal that genome reduction, determined by both genomic sequencing and flow cytometry, is a consistent feature across the genus Escovopsis, largely occurring in coding regions, specifically in the form of gene loss and reductions in copy numbers of genes. All functional gene categories have reduced copy numbers, but resistance and virulence genes maintain functional diversity. Biosynthetic gene clusters (BGCs) contribute to phylogenetic differences among Escovopsis spp., and sister taxa in the Hypocreaceae. The phylogenetic patterns of co-diversification among BGCs are similarly exhibited across mass spectrometry analyses of the metabolomes of Escovopsis and their sister taxa. Taken together, our results indicate that Escovopsis spp. evolved unique genomic repertoires to specialize on the fungus-growing ant-microbe symbiosis.


Assuntos
Formigas , Hypocreales , Parasitos , Animais , Formigas/genética , Formigas/microbiologia , Filogenia , Simbiose/genética , Hypocreales/genética
9.
Proc Natl Acad Sci U S A ; 119(42): e2212930119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215464

RESUMO

Bacterial secondary metabolites are a major source of antibiotics and other bioactive compounds. In microbial communities, these molecules can mediate interspecies interactions and responses to environmental change. Despite the importance of secondary metabolites in human health and microbial ecology, little is known about their roles and regulation in the context of multispecies communities. In a simplified model of the rhizosphere composed of Bacillus cereus, Flavobacterium johnsoniae, and Pseudomonas koreensis, we show that the dynamics of secondary metabolism depend on community species composition and interspecies interactions. Comparative metatranscriptomics and metametabolomics reveal that the abundance of transcripts of biosynthetic gene clusters (BGCs) and metabolomic molecular features differ between monocultures or dual cultures and a tripartite community. In both two- and three-member cocultures, P. koreensis modified expression of BGCs for zwittermicin, petrobactin, and other secondary metabolites in B. cereus and F. johnsoniae, whereas the BGC transcriptional response to the community in P. koreensis itself was minimal. Pairwise and tripartite cocultures with P. koreensis displayed unique molecular features that appear to be derivatives of lokisin, suggesting metabolic handoffs between species. Deleting the BGC for koreenceine, another P. koreensis metabolite, altered transcript and metabolite profiles across the community, including substantial up-regulation of the petrobactin and bacillibactin BGCs in B. cereus, suggesting that koreenceine represses siderophore production. Results from this model community show that bacterial BGC expression and chemical output depend on the identity and biosynthetic capacity of coculture partners, suggesting community composition and microbiome interactions may shape the regulation of secondary metabolism in nature.


Assuntos
Microbiota , Sideróforos , Antibacterianos , Benzamidas , Humanos , Metabolismo Secundário , Sideróforos/genética , Sideróforos/metabolismo
10.
Methods Mol Biol ; 2489: 129-155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35524049

RESUMO

Genome mining has become an invaluable tool in natural products research to quickly identify and characterize the biosynthetic pathways that assemble secondary or specialized metabolites. Recently, evolutionary principles have been incorporated into genome mining strategies in an effort to better assess and prioritize novelty and understand their chemical diversification for engineering purposes. Here, we provide an introduction to the principles underlying evolutionary genome mining, including bioinformatic strategies and natural product biosynthetic databases. We introduce workflows for traditional genome mining, focusing on the popular pipeline antiSMASH, and methods to predict enzyme substrate specificity from genomic information. We then provide an in-depth discussion of evolutionary genome mining workflows, including EvoMining, CORASON, ARTS, and others, as adopted by our group for the discovery and prioritization of natural products biosynthetic gene clusters and their products.


Assuntos
Produtos Biológicos , Produtos Biológicos/química , Vias Biossintéticas/genética , Genoma , Genoma Bacteriano , Genômica , Família Multigênica
11.
mBio ; 13(3): e0248621, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35435700

RESUMO

Microbial interactions dictate the structure and function of microbiomes, but the complexity of natural communities can obscure the individual interactions. Model microbial communities constructed with genetically tractable strains known to interact in natural settings can untangle these networks and reveal underpinning mechanisms. Our model system, The Hitchhikers of the Rhizosphere (THOR), is composed of three species-Bacillus cereus, Flavobacterium johnsoniae, and Pseudomonas koreensis-that co-isolate from field-grown soybean roots. Comparative metatranscriptomics on THOR revealed global patterns of interspecies transcriptional regulation. When grown in pairs, each member of THOR exhibits unique signaling behavior. In the community setting, gene expression is dominated by pairwise interactions with Pseudomonas koreensis mediated either directly or indirectly by its production of the antibiotic koreenceine-the apparent "hammer" of THOR. In pairwise interactions, the koreenceine biosynthetic cluster is responsible for 85 and 22% of differentially regulated genes in F. johnsoniae and B. cereus, respectively. Although both deletion of the koreenceine locus and reduction of P. koreensis inoculum size increase F. johnsoniae populations, the transcriptional response of P. koreensis is only activated when it is a relative minority member at the beginning of coculture. The largest group of upregulated P. koreensis genes in response to F. johnsoniae are those without functional annotation, indicating that focusing on genes important for community interactions may offer a path toward functional assignments for unannotated genes. This study illustrates the power of comparative metatranscriptomics of microorganisms encountering increasing microbial complexity for understanding community signal integration, antibiotic responses, and interspecies communication. IMPORTANCE The diversity, ubiquity, and significance of microbial communities is clear. However, the predictable and reliable manipulation of microbiomes to impact human, environmental, and agricultural health remains a challenge. Effective remodeling of microbiomes will be enabled by understanding the interspecies interactions that govern community processes. The extreme complexity of most microbiomes has impeded characterization of the relevant interactions. Investigating the genetics and biochemistry of simplified, model microbiomes could unearth specific interactions and generate predictions about community-governing principles. Here, we use one such model community to quantify changes in gene expression of individual species as they encounter stimuli from one or more species, directly mapping combinatorial interspecies interactions. A surprising amount of gene expression is regulated by a single molecule, the antibiotic koreenceine, which appears to impact gene regulation across community networks.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , Expressão Gênica , Humanos , Pseudomonas , Rizosfera
13.
mSystems ; 7(2): e0151921, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35258341

RESUMO

The complexity of microbial communities hinders our understanding of how microbial diversity and microbe-microbe interactions impact community functions. Here, using six independent communities originating from the refuse dumps of leaf-cutter ants and enriched using the plant polymer cellulose as the sole source of carbon, we examine how changes in bacterial diversity and interactions impact plant biomass decomposition. Over up to 60 serial transfers (∼8 months) using Whatman cellulose filter paper, cellulolytic ability increased and then stabilized in four enrichment lines and was variable in two lines. Bacterial community characterization using 16S rRNA gene amplicon sequencing showed community succession differed between the highly cellulolytic enrichment lines and those that had slower and more variable cellulose degradation rates. Metagenomic and metatranscriptomic analyses revealed that Cellvibrio and/or Cellulomonas dominated each enrichment line and produced the majority of cellulase enzymes, while diverse taxa were retained within these communities over the duration of transfers. Interestingly, the less cellulolytic communities had a higher diversity of organisms competing for the cellulose breakdown product cellobiose, suggesting that cheating slowed cellulose degradation. In addition, we found competitive exclusion as an important factor shaping all of the communities, with a negative correlation of Cellvibrio and Cellulomonas abundance within individual enrichment lines and the expression of genes associated with the production of secondary metabolites, toxins, and other antagonistic compounds. Our results provide insights into how microbial diversity and competition affect the stability and function of cellulose-degrading communities. IMPORTANCE Microbial communities are a key driver of the carbon cycle through the breakdown of complex polysaccharides in diverse environments including soil, marine systems, and the mammalian gut. However, due to the complexity of these communities, the species-species interactions that impact community structure and ultimately shape the rate of decomposition are difficult to define. Here, we performed serial enrichment on cellulose using communities inoculated from leaf-cutter ant refuse dumps, a cellulose-rich environment. By concurrently tracking cellulolytic ability and community composition and through metagenomic and metatranscriptomic sequencing, we analyzed the ecological dynamics of the enrichment lines. Our data suggest that antagonism is prevalent in these communities and that competition for soluble sugars may slow degradation and lead to community instability. Together, these results help reveal the relationships between competition and polysaccharide decomposition, with implications in diverse areas ranging from microbial community ecology to cellulosic biofuels production.


Assuntos
Celulose , Microbiota , Animais , Celulose/metabolismo , RNA Ribossômico 16S/genética , Bactérias , Polissacarídeos/metabolismo , Mamíferos/genética
14.
Mar Drugs ; 20(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35049898

RESUMO

Chemical investigations of a marine sponge-associated Bacillus revealed six new imidazolium-containing compounds, bacillimidazoles A-F (1-6). Previous reports of related imidazolium-containing natural products are rare. Initially unveiled by timsTOF (trapped ion mobility spectrometry) MS data, extensive HRMS and 1D and 2D NMR analyses enabled the structural elucidation of 1-6. In addition, a plausible biosynthetic pathway to bacillimidazoles is proposed based on isotopic labeling experiments and invokes the highly reactive glycolytic adduct 2,3-butanedione. Combined, the results of structure elucidation efforts, isotopic labeling studies and bioinformatics suggest that 1-6 result from a fascinating intersection of primary and secondary metabolic pathways in Bacillus sp. WMMC1349. Antimicrobial assays revealed that, of 1-6, only compound six displayed discernible antibacterial activity, despite the close structural similarities shared by all six natural products.


Assuntos
Antibacterianos/farmacologia , Bacillus , Poríferos , Animais , Antibacterianos/química , Organismos Aquáticos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana
15.
Curr Microbiol ; 79(2): 64, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020062

RESUMO

Secondary metabolites produced by microorganisms are the main source of antimicrobials and other pharmaceutical drugs. Soil microbes have been the primary discovery source for these secondary metabolites, often producing complex organic compounds with specific biological activities. Research suggests that secondary metabolism broadly shapes microbial ecological interactions, but little is known about the factors that shape the abundance, distribution, and diversity of biosynthetic gene clusters in the context of microbial communities. In this study, we investigate the role of nutrient availability on the abundance of biosynthetic gene clusters in soil-derived microbial consortia. Soil microbial consortia enriched in high sugar medium (150 mg/L of glucose and 200 mg/L of trehalose) had more biosynthetic gene clusters and higher inhibitory activity than those enriched in low sugar medium (15 mg/L of glucose + 20 mg/L of trehalose). Our results demonstrate that experimental microbial communities are a promising tool to study the ecology of specialized metabolites.


Assuntos
Microbiota , Solo , Bactérias/genética , Nutrientes , Microbiologia do Solo
16.
Nat Prod Rep ; 38(11): 2024-2040, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34787598

RESUMO

This review covers literature between 2003-2021The development and application of genome mining tools has given rise to ever-growing genetic and chemical databases and propelled natural products research into the modern age of Big Data. Likewise, an explosion of evolutionary studies has unveiled genetic patterns of natural products biosynthesis and function that support Darwin's theory of natural selection and other theories of adaptation and diversification. In this review, we aim to highlight how Big Data and evolutionary thinking converge in the study of natural products, and how this has led to an emerging sub-discipline of evolutionary genome mining of natural products. First, we outline general principles to best utilize Big Data in natural products research, addressing key considerations needed to provide evolutionary context. We then highlight successful examples where Big Data and evolutionary analyses have been combined to provide bioinformatic resources and tools for the discovery of novel natural products and their biosynthetic enzymes. Rather than an exhaustive list of evolution-driven discoveries, we highlight examples where Big Data and evolutionary thinking have been embraced for the evolutionary genome mining of natural products. After reviewing the nascent history of this sub-discipline, we discuss the challenges and opportunities of genomic and metabolomic tools with evolutionary foundations and/or implications and provide a future outlook for this emerging and exciting field of natural product research.


Assuntos
Big Data , Produtos Biológicos/metabolismo , Descoberta de Drogas , Evolução Molecular , Genoma , Algoritmos
17.
Nat Prod Rep ; 38(11): 2083-2099, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34693961

RESUMO

Covering: up to 2021Natural products research is in the midst of a renaissance ushered in by a modern understanding of microbiology and the technological explosions of genomics and metabolomics. As the exploration of uncharted chemical space expands into high-throughput discovery campaigns, it has become increasingly clear how design elements influence success: (bio)geography, habitat, community dynamics, culturing/induction methods, screening methods, dereplication, and more. We explore critical considerations and assumptions in natural products discovery. We revisit previous estimates of chemical rediscovery and discuss their relatedness to study design and producer taxonomy. Through frequency analyses of biosynthetic gene clusters in publicly available genomic data, we highlight phylogenetic biases that influence rediscovery rates. Through selected examples of how study design at each level determines discovery outcomes, we discuss the challenges and opportunities for the future of high-throughput natural product discovery.


Assuntos
Bactérias/metabolismo , Produtos Biológicos/isolamento & purificação , Descoberta de Drogas , Bactérias/classificação , Meios de Cultura , Microbiota , Metabolismo Secundário
18.
Nat Commun ; 12(1): 6235, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716343

RESUMO

The fungal pathogen Candida albicans can form biofilms that protect it from drugs and the immune system. The biofilm cells release extracellular vesicles (EVs) that promote extracellular matrix formation and resistance to antifungal drugs. Here, we define functions for numerous EV cargo proteins in biofilm matrix assembly and drug resistance, as well as in fungal cell adhesion and dissemination. We use a machine-learning analysis of cargo proteomic data from mutants with EV production defects to identify 63 candidate gene products for which we construct mutant and complemented strains for study. Among these, 17 mutants display reduced biofilm matrix accumulation and antifungal drug resistance. An additional subset of 8 cargo mutants exhibit defects in adhesion and/or dispersion. Representative cargo proteins are shown to function as EV cargo through the ability of exogenous wild-type EVs to complement mutant phenotypic defects. Most functionally assigned cargo proteins have roles in two or more of the biofilm phases. Our results support that EVs provide community coordination throughout biofilm development in C. albicans.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Farmacorresistência Fúngica/fisiologia , Vesículas Extracelulares/metabolismo , Proteínas Fúngicas/metabolismo , Animais , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Candidíase/microbiologia , Adesão Celular/efeitos dos fármacos , Cateteres Venosos Centrais/microbiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Matriz Extracelular/química , Vesículas Extracelulares/química , Feminino , Proteínas Fúngicas/genética , Mutação , Ratos
19.
Nat Commun ; 12(1): 1422, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658492

RESUMO

Trans-acyltransferase polyketide synthases (trans-AT PKSs) are bacterial multimodular enzymes that biosynthesize diverse pharmaceutically and ecologically important polyketides. A notable feature of this natural product class is the existence of chemical hybrids that combine core moieties from different polyketide structures. To understand the prevalence, biosynthetic basis, and evolutionary patterns of this phenomenon, we developed transPACT, a phylogenomic algorithm to automate global classification of trans-AT PKS modules across bacteria and applied it to 1782 trans-AT PKS gene clusters. These analyses reveal widespread exchange patterns suggesting recombination of extended PKS module series as an important mechanism for metabolic diversification in this natural product class. For three plant-associated bacteria, i.e., the root colonizer Gynuella sunshinyii and the pathogens Xanthomonas cannabis and Pseudomonas syringae, we demonstrate the utility of this computational approach for uncovering cryptic relationships between polyketides, accelerating polyketide mining from fragmented genome sequences, and discovering polyketide variants with conserved moieties of interest. As natural combinatorial hybrids are rare among the more commonly studied cis-AT PKSs, this study paves the way towards evolutionarily informed, rational PKS engineering to produce chimeric trans-AT PKS-derived polyketides.


Assuntos
Aciltransferases/genética , Proteínas de Bactérias/genética , Filogenia , Policetídeo Sintases/genética , Policetídeos/metabolismo , Aciltransferases/metabolismo , Algoritmos , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Evolução Molecular , Genoma Bacteriano , Células HeLa , Humanos , Lactonas/metabolismo , Macrolídeos/metabolismo , Família Multigênica , Piperidonas/química , Plantas/microbiologia , Policetídeo Sintases/metabolismo , Policetídeos/química , Pseudomonas syringae/metabolismo , Xanthomonas/metabolismo , Xanthomonas/patogenicidade
20.
mBio ; 12(1)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593964

RESUMO

The world faces two seemingly unrelated challenges-a shortfall in the STEM workforce and increasing antibiotic resistance among bacterial pathogens. We address these two challenges with Tiny Earth, an undergraduate research course that excites students about science and creates a pipeline for antibiotic discovery.


Assuntos
Antibacterianos , Descoberta de Drogas/educação , Ciência/educação , Estudantes , Bactérias/efeitos dos fármacos , Descoberta de Drogas/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA