Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(9): e0310306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39283893

RESUMO

Sugarcane (Saccharum spp.)is an economically useful crop grown globally for sugar, ethanol and biofuel production. The crop is vulnerable to fungus Colletotrichum falcatum known to cause red rot disease. The pathogen hydrolyses stalk parenchyma cells where sucrose is accumulated resulting in upto 75% losses in sugar recovery. In this study, transgenic sugarcane having resistance against red rot was developed by introducing Trichoderma spp. endochitinase following Agrobacterium mediated transformation. The transgene introduction and expression in genetically modified plants were verified through qRT-PCR revealing upto 6-fold enhancement in endochitinase expression than non-transgenic plants. Hyperspectral Imaging of transgenic plants displayed altered leaf reflectance spectra and vegetative indices that were positively correlated with ransgene expression. The bioassay with virulent pathotypes of C. falcatumCF08 and CF13 known for epiphytotic occurrence resulted in identification of resistant plant Chit 3-13.The plants with higher reflectance also displayed improved disease resistance, implying their early classification into resistant/susceptible. The losses in sucrose content were minimized (up to 4-fold) in inoculated resistant plant Chit 3-13 as compared to susceptible non-transgenic plant, and a fewer pathogen hyphae were detected in vascular cells of the former through optical microscopy. The electron micrographs confirmed sucrose-filled stalk parenchyma cells in Chit 3-13; in contrast, cells of non-transgenic inoculated plant were depleted of sucrose. The active sites involved in cleaving 1-4 ß-glycoside bonds of N-acetyl-d-glucosaminein the pathogen hyphal walls were detected through endochitinase protein structural modelling. The transgenic sugarcane is an important source for in trogressingred rot resistance in plant breeding programs.


Assuntos
Quitinases , Colletotrichum , Resistência à Doença , Doenças das Plantas , Plantas Geneticamente Modificadas , Saccharum , Trichoderma , Saccharum/microbiologia , Saccharum/genética , Resistência à Doença/genética , Plantas Geneticamente Modificadas/microbiologia , Plantas Geneticamente Modificadas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Colletotrichum/patogenicidade , Trichoderma/genética , Quitinases/genética , Quitinases/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/genética
2.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-39046037

RESUMO

Rice production is severely affected by various diseases such as bacterial leaf blight (BLB), brown spot (BS), false smut (FS), foot rot (FR), rice blast (RB), and sheath blight (SB). In recent years, several quantitative trait loci (QTLs) studies involving different populations have been carried out, resulting in the identification of hundreds of resistance QTLs for each disease. These QTLs can be integrated and analyzed using meta-QTL (MQTL) analysis for better understanding of the genetic architecture underlying multiple disease resistance (MDR). This study involved an MQTL analysis on 661 QTLs (378, 161, 21, 41, 44, and 16 QTLs for SB, RB, BLB, BS, FS, and FR, respectively) retrieved from 50 individual studies published from 1995 to 2021. Of these, 503 QTLs were projected finally onto the consensus map saturated with 6,275 markers, resulting in 73 MQTLs, including 27 MDR-MQTLs conferring resistance to three or more diseases. Forty-seven MQTLs were validated using marker-trait associations identified in published genome-wide association studies. A total of 3,310 genes, including both R and defense genes, were also identified within some selected high-confidence MQTL regions that were investigated further for the syntenic relationship with barley, wheat, and maize genomes. Thirty-nine high-confidence candidate genes were selected based on their expression patterns and recommended for future studies involving functional validation, genetic engineering, and gene editing. Nineteen MQTLs were co-localized with 39 known R genes for BLB and RB diseases. These results could pave the way to utilize candidate genes in a marker-assisted breeding program for MDR in rice.


Assuntos
Resistência à Doença , Oryza , Doenças das Plantas , Locos de Características Quantitativas , Oryza/genética , Oryza/microbiologia , Resistência à Doença/genética , Locos de Características Quantitativas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Genes de Plantas/genética , Cromossomos de Plantas/genética
3.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047112

RESUMO

Root system architecture (RSA), also known as root morphology, is critical in plant acquisition of soil resources, plant growth, and yield formation. Many QTLs associated with RSA or root traits in maize have been identified using several bi-parental populations, particularly in response to various environmental factors. In the present study, a meta-analysis of QTLs associated with root traits was performed in maize using 917 QTLs retrieved from 43 mapping studies published from 1998 to 2020. A total of 631 QTLs were projected onto a consensus map involving 19,714 markers, which led to the prediction of 68 meta-QTLs (MQTLs). Among these 68 MQTLs, 36 MQTLs were validated with the marker-trait associations available from previous genome-wide association studies for root traits. The use of comparative genomics approaches revealed several gene models conserved among the maize, sorghum, and rice genomes. Among the conserved genomic regions, the ortho-MQTL analysis uncovered 20 maize MQTLs syntenic to 27 rice MQTLs for root traits. Functional analysis of some high-confidence MQTL regions revealed 442 gene models, which were then subjected to in silico expression analysis, yielding 235 gene models with significant expression in various tissues. Furthermore, 16 known genes viz., DXS2, PHT, RTP1, TUA4, YUC3, YUC6, RTCS1, NSA1, EIN2, NHX1, CPPS4, BIGE1, RCP1, SKUS13, YUC5, and AW330564 associated with various root traits were present within or near the MQTL regions. These results could aid in QTL cloning and pyramiding in developing new maize varieties with specific root architecture for proper plant growth and development under optimum and abiotic stress conditions.


Assuntos
Oryza , Zea mays , Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Locos de Características Quantitativas , Oryza/genética
4.
Front Plant Sci ; 12: 799932, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211132

RESUMO

Bitter gourd (Momordica charantia L.) is an important vegetable crop having numerous medicinal properties. Earliness and yield related traits are main aims of bitter gourd breeding program. High resolution quantitative trait loci (QTLs) mapping can help in understanding the molecular basis of phenotypic variation of these traits and thus facilitate marker-assisted breeding. The aim of present study was to identify genetic loci controlling earliness, fruit, and seed related traits. To achieve this, genotyping-by-sequencing (GBS) approach was used to genotype 101 individuals of F4 population derived from a cross between an elite cultivar Punjab-14 and PAUBG-6. This population was phenotyped under net-house conditions for three years 2018, 2019, and 2021. The linkage map consisting of 15 linkage groups comprising 3,144 single nucleotide polymorphism (SNP) markers was used to detect the QTLs for nine traits. A total of 50 QTLs for these traits were detected which were distributed on 11 chromosomes. The QTLs explained 5.09-29.82% of the phenotypic variance. The highest logarithm of the odds (LOD) score for a single QTL was 8.68 and the lowest was 2.50. For the earliness related traits, a total of 22 QTLs were detected. For the fruit related traits, a total of 16 QTLs and for seed related traits, a total of 12 QTLs were detected. Out of 50 QTLs, 20 QTLs were considered as frequent QTLs (FQ-QTLs). The information generated in this study is very useful in the future for fine-mapping and marker-assisted selection for these traits in bitter gourd improvement program.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA