Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 603(7900): 335-342, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236983

RESUMO

RAS family members are the most frequently mutated oncogenes in human cancers. Although KRAS(G12C)-specific inhibitors show clinical activity in patients with cancer1-3, there are no direct inhibitors of NRAS, HRAS or non-G12C KRAS variants. Here we uncover the requirement of the silent KRASG60G mutation for cells to produce a functional KRAS(Q61K). In the absence of this G60G mutation in KRASQ61K, a cryptic splice donor site is formed, promoting alternative splicing and premature protein termination. A G60G silent mutation eliminates the splice donor site, yielding a functional KRAS(Q61K) variant. We detected a concordance of KRASQ61K and a G60G/A59A silent mutation in three independent pan-cancer cohorts. The region around RAS Q61 is enriched in exonic splicing enhancer (ESE) motifs and we designed mutant-specific oligonucleotides to interfere with ESE-mediated splicing, rendering the RAS(Q61) protein non-functional in a mutant-selective manner. The induction of aberrant splicing by antisense oligonucleotides demonstrated therapeutic effects in vitro and in vivo. By studying the splicing necessary for a functional KRAS(Q61K), we uncover a mutant-selective treatment strategy for RASQ61 cancer and expose a mutant-specific vulnerability, which could potentially be exploited for therapy in other genetic contexts.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Mutação Silenciosa , Processamento Alternativo/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Oncogenes/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Sítios de Splice de RNA/genética
2.
Clin Cancer Res ; 28(8): 1640-1650, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35091439

RESUMO

PURPOSE: Activating missense mutations of KRAS are the most frequent oncogenic driver events in lung adenocarcinoma (LUAD). However, KRAS isoforms are highly heterogeneous, and data on the potential isoform-dependent therapeutic vulnerabilities are still lacking. EXPERIMENTAL DESIGN: We developed an isogenic cell-based platform to compare the oncogenic properties and specific therapeutic actionability of KRAS-mutant isoforms. In parallel, we analyzed clinicopathologic and genomic data from 3,560 patients with non-small cell lung cancer (NSCLC) to survey allele-specific features associated with oncogenic KRAS mutations. RESULTS: In isogenic cell lines expressing different mutant KRAS isoforms, we identified isoform-specific biochemical, biological, and oncogenic properties both in vitro and in vivo. These exclusive features correlated with different therapeutic responses to MEK inhibitors, with KRAS G12C and Q61H mutants being more sensitive compared with other isoforms. In vivo, combined KRAS G12C and MEK inhibition was more effective than either drug alone. Among patients with NSCLCs that underwent comprehensive tumor genomic profiling, STK11 and ATM mutations were significantly enriched among tumors harboring KRAS G12C, G12A, and G12V mutations. KEAP1 mutation was significantly enriched among KRAS G12C and KRAS G13X LUADs. KRAS G13X-mutated tumors had the highest frequency of concurrent STK11 and KEAP1 mutations. Transcriptomic profiling revealed unique patterns of gene expression in each KRAS isoform, compared with KRAS wild-type tumors. CONCLUSIONS: This study demonstrates that KRAS isoforms are highly heterogeneous in terms of concurrent genomic alterations and gene-expression profiles, and that stratification based on KRAS alleles should be considered in the design of future clinical trials.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação , Fator 2 Relacionado a NF-E2/genética , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
3.
Clin Cancer Res ; 27(1): 276-287, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33239433

RESUMO

PURPOSE: Dexamethasone, a uniquely potent corticosteroid, is frequently administered to patients with brain tumors to decrease tumor-associated edema, but limited data exist describing how dexamethasone affects the immune system systemically and intratumorally in patients with glioblastoma (GBM), particularly in the context of immunotherapy. EXPERIMENTAL DESIGN: We evaluated the dose-dependent effects of dexamethasone when administered with programmed cell death 1 (PD-1) blockade and/or radiotherapy in immunocompetent C57BL/6 mice with syngeneic GL261 and CT-2A GBM tumors. Clinically, the effect of dexamethasone on survival was evaluated in 181 patients with isocitrate dehydrogenase (IDH) wild-type GBM treated with PD-(L)1 blockade, with adjustment for relevant prognostic factors. RESULTS: Despite the inherent responsiveness of GL261 to immune checkpoint blockade, concurrent dexamethasone administration with anti-PD-1 therapy reduced survival in a dose-dependent manner. Concurrent dexamethasone also abrogated survival following anti-PD-1 therapy with or without radiotherapy in immune-resistant CT-2A models. Dexamethasone decreased T-lymphocyte numbers by increasing apoptosis, in addition to decreasing lymphocyte functional capacity. Myeloid and natural killer cell populations were also generally reduced by dexamethasone. Thus, dexamethasone appears to negatively affect both adaptive and innate immune responses. As a clinical correlate, a retrospective analysis of 181 consecutive patients with IDH wild-type GBM treated with PD-(L)1 blockade revealed poorer survival among those on baseline dexamethasone. Upon multivariable adjustment with relevant prognostic factors, baseline dexamethasone administration was the strongest predictor of poor survival [reference, no dexamethasone; <2 mg HR, 2.16; 95% confidence interval (CI), 1.30-3.68; P = 0.003 and ≥2 mg HR, 1.97; 95% CI, 1.23-3.16; P = 0.005]. CONCLUSIONS: Our preclinical and clinical data indicate that concurrent dexamethasone therapy may be detrimental to immunotherapeutic approaches for patients with GBM.


Assuntos
Edema Encefálico/tratamento farmacológico , Neoplasias Encefálicas/terapia , Dexametasona/farmacologia , Glioblastoma/terapia , Inibidores de Checkpoint Imunológico/farmacologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Edema Encefálico/etiologia , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral/transplante , Quimiorradioterapia/métodos , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Seguimentos , Glioblastoma/complicações , Glioblastoma/genética , Glioblastoma/mortalidade , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Isocitrato Desidrogenase/genética , Estimativa de Kaplan-Meier , Camundongos , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Estudos Retrospectivos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA