Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077056

RESUMO

Under chronic stress, cells must balance competing demands between cellular survival and tissue function. In metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD/NASH), hepatocytes cooperate with structural and immune cells to perform crucial metabolic, synthetic, and detoxification functions despite nutrient imbalances. While prior work has emphasized stress-induced drivers of cell death, the dynamic adaptations of surviving cells and their functional repercussions remain unclear. Namely, we do not know which pathways and programs define cellular responses, what regulatory factors mediate (mal)adaptations, and how this aberrant activity connects to tissue-scale dysfunction and long-term disease outcomes. Here, by applying longitudinal single-cell multi -omics to a mouse model of chronic metabolic stress and extending to human cohorts, we show that stress drives survival-linked tradeoffs and metabolic rewiring, manifesting as shifts towards development-associated states in non-transformed hepatocytes with accompanying decreases in their professional functionality. Diet-induced adaptations occur significantly prior to tumorigenesis but parallel tumorigenesis-induced phenotypes and predict worsened human cancer survival. Through the development of a multi -omic computational gene regulatory inference framework and human in vitro and mouse in vivo genetic perturbations, we validate transcriptional (RELB, SOX4) and metabolic (HMGCS2) mediators that co-regulate and couple the balance between developmental state and hepatocyte functional identity programming. Our work defines cellular features of liver adaptation to chronic stress as well as their links to long-term disease outcomes and cancer hallmarks, unifying diverse axes of cellular dysfunction around core causal mechanisms.

3.
Nat Metab ; 5(2): 265-276, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732624

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth in response to amino acid and glucose levels. However, how mTORC1 senses glucose availability to regulate various downstream signalling pathways remains largely elusive. Here we report that AMP-activated protein kinase (AMPK)-mediated phosphorylation of WDR24, a core component of the GATOR2 complex, has a role in the glucose-sensing capability of mTORC1. Mechanistically, glucose deprivation activates AMPK, which directly phosphorylates WDR24 on S155, subsequently disrupting the integrity of the GATOR2 complex to suppress mTORC1 activation. Phosphomimetic Wdr24S155D knock-in mice exhibit early embryonic lethality and reduced mTORC1 activity. On the other hand, compared to wild-type littermates, phospho-deficient Wdr24S155A knock-in mice are more resistant to fasting and display elevated mTORC1 activity. Our findings reveal that AMPK-mediated phosphorylation of WDR24 modulates glucose-induced mTORC1 activation, thereby providing a rationale for targeting AMPK-WDR24 signalling to fine-tune mTORC1 activation as a potential therapeutic means to combat human diseases with aberrant activation of mTORC1 signalling including cancer.


Assuntos
Proteínas Quinases Ativadas por AMP , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Serina-Treonina Quinases TOR , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/metabolismo
4.
Mol Cell ; 82(24): 4700-4711.e12, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384136

RESUMO

Maintenance of energy level to drive movements and material exchange with the environment is a basic principle of life. AMP-activated protein kinase (AMPK) senses energy level and is a major regulator of cellular energy responses. The gamma subunit of AMPK senses elevated ratio of AMP to ATP and allosterically activates the alpha catalytic subunit to phosphorylate downstream effectors. Here, we report that knockout of AMPKγ, but not AMPKα, suppressed phosphorylation of eukaryotic translation elongation factor 2 (eEF2) induced by energy starvation. We identified PPP6C as an AMPKγ-regulated phosphatase of eEF2. AMP-bound AMPKγ sequesters PPP6C, thereby blocking dephosphorylation of eEF2 and thus inhibiting translation elongation to preserve energy and to promote cell survival. Further phosphoproteomic analysis identified additional targets of PPP6C regulated by energy stress in an AMPKγ-dependent manner. Thus, AMPKγ senses cellular energy availability to regulate not only AMPKα kinase, but also PPP6C phosphatase and possibly other effectors.


Assuntos
Proteínas Quinases Ativadas por AMP , Biossíntese de Proteínas , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fosforilação , Fator 2 de Elongação de Peptídeos/metabolismo
5.
Development ; 148(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34918741

RESUMO

Genetic and genomic analysis in Drosophila suggests that hematopoietic progenitors likely transition into terminal fates via intermediate progenitors (IPs) with some characteristics of either, but perhaps maintaining IP-specific markers. In the past, IPs have not been directly visualized and investigated owing to lack of appropriate genetic tools. Here, we report a Split GAL4 construct, CHIZ-GAL4, that identifies IPs as cells physically juxtaposed between true progenitors and differentiating hemocytes. IPs are a distinct cell type with a unique cell-cycle profile and they remain multipotent for all blood cell fates. In addition, through their dynamic control of the Notch ligand Serrate, IPs specify the fate of direct neighbors. The Ras pathway controls the number of IP cells and promotes their transition into differentiating cells. This study suggests that it would be useful to characterize such intermediate populations of cells in mammalian hematopoietic systems.


Assuntos
Proteínas de Drosophila/genética , Hematopoese/genética , Proteína Jagged-1/genética , Receptores Notch/genética , Fatores de Transcrição/genética , Animais , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemócitos , Lectinas/genética , Receptores de Interleucina/genética , Transdução de Sinais/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
6.
Dev Cell ; 56(16): 2329-2347.e6, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34428399

RESUMO

Mammalian preimplantation embryos follow a stereotypic pattern of development from zygotes to blastocysts. Here, we use labeled nutrient isotopologue analysis of small numbers of embryos to track downstream metabolites. Combined with transcriptomic analysis, we assess the capacity of the embryo to reprogram its metabolism through development. Early embryonic metabolism is rigid in its nutrient requirements, sensitive to reductive stress and has a marked disequilibrium between two halves of the TCA cycle. Later, loss of maternal LDHB and transcription of zygotic products favors increased activity of bioenergetic shuttles, fatty-acid oxidation and equilibration of the TCA cycle. As metabolic plasticity peaks, blastocysts can develop without external nutrients. Normal developmental metabolism of the early embryo is distinct from cancer metabolism. However, similarities emerge upon reductive stress. Increased metabolic plasticity with maturation is due to changes in redox control mechanisms and to transcriptional reprogramming of later-stage embryos during homeostasis or upon adaptation to environmental changes.


Assuntos
Adaptação Fisiológica , Blastocisto/metabolismo , Metaboloma , Animais , Células Cultivadas , Ciclo do Ácido Cítrico , Glucose/metabolismo , Glutamina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Oxirredução , Transcriptoma
7.
Nat Commun ; 11(1): 1880, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312982

RESUMO

PI3K/AKT signaling is known to regulate cancer metabolism, but whether metabolic feedback regulates the PI3K/AKT pathway is unclear. Here, we demonstrate the important reciprocal crosstalk between the PI3K/AKT signal and pentose phosphate pathway (PPP) branching metabolic pathways. PI3K/AKT activation stabilizes G6PD, the rate-limiting enzyme of the PPP, by inhibiting the newly identified E3 ligase TIRM21 and promotes the PPP. PPP metabolites, in turn, reinforce AKT activation and further promote cancer metabolic reprogramming by blocking the expression of the AKT inhibitor PHLDA3. Knockout of TRIM21 or PHLDA3 promotes crosstalk and cell proliferation. Importantly, PTEN null human cancer cells and in vivo murine models are sensitive to anti-PPP treatments, suggesting the importance of the PPP in maintaining AKT activation even in the presence of a constitutively activated PI3K pathway. Our study suggests that blockade of this reciprocal crosstalk mechanism may have a therapeutic benefit for cancers with PTEN loss or PI3K/AKT activation.


Assuntos
Proteínas Nucleares/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ribonucleoproteínas/metabolismo , Células A549 , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Glucosefosfato Desidrogenase , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Neoplasias/metabolismo , Proteínas Nucleares/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Via de Pentose Fosfato/fisiologia , Ribonucleoproteínas/farmacologia , Transdução de Sinais
8.
Dev Cell ; 53(1): 9-26.e4, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32197068

RESUMO

The mouse embryo undergoes compaction at the 8-cell stage, and its transition to 16 cells generates polarity such that the outer apical cells are trophectoderm (TE) precursors and the inner cell mass (ICM) gives rise to the embryo. Here, we report that this first cell fate specification event is controlled by glucose. Glucose does not fuel mitochondrial ATP generation, and glycolysis is dispensable for blastocyst formation. Furthermore, glucose does not help synthesize amino acids, fatty acids, and nucleobases. Instead, glucose metabolized by the hexosamine biosynthetic pathway (HBP) allows nuclear localization of YAP1. In addition, glucose-dependent nucleotide synthesis by the pentose phosphate pathway (PPP), along with sphingolipid (S1P) signaling, activates mTOR and allows translation of Tfap2c. YAP1, TEAD4, and TFAP2C interact to form a complex that controls TE-specific gene transcription. Glucose signaling has no role in ICM specification, and this process of developmental metabolism specifically controls TE cell fate.


Assuntos
Diferenciação Celular/fisiologia , Embrião de Mamíferos/metabolismo , Glucose/metabolismo , Glicólise/fisiologia , Proteínas de Homeodomínio/metabolismo , Animais , Blastocisto/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Fatores de Transcrição/metabolismo
9.
Cell ; 168(1-2): 210-223.e11, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086092

RESUMO

Transcriptional control requires epigenetic changes directed by mitochondrial tricarboxylic acid (TCA) cycle metabolites. In the mouse embryo, global epigenetic changes occur during zygotic genome activation (ZGA) at the 2-cell stage. Pyruvate is essential for development beyond this stage, which is at odds with the low activity of mitochondria in this period. We now show that a number of enzymatically active mitochondrial enzymes associated with the TCA cycle are essential for epigenetic remodeling and are transiently and partially localized to the nucleus. Pyruvate is essential for this nuclear localization, and a failure of TCA cycle enzymes to enter the nucleus correlates with loss of specific histone modifications and a block in ZGA. At later stages, however, these enzymes are exclusively mitochondrial. In humans, the enzyme pyruvate dehydrogenase is transiently nuclear at the 4/8-cell stage coincident with timing of human embryonic genome activation, suggesting a conserved metabolic control mechanism underlying early pre-implantation development.


Assuntos
Ciclo do Ácido Cítrico , Genoma , Zigoto/metabolismo , Animais , Blastocisto/metabolismo , Núcleo Celular/metabolismo , Epigênese Genética , Glicosilação , Histonas/metabolismo , Cetona Oxirredutases/metabolismo , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Ácido Pirúvico/metabolismo
10.
Int J Syst Evol Microbiol ; 64(Pt 1): 66-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24014623

RESUMO

A Gram-stain-negative, non-motile and aerobic bacterium, designated CF17(T), was isolated from coastal planktonic seaweeds, East China Sea. The isolate grew at 18-37 °C (optimum 25-28 °C), pH 6.5-9.0 (optimum 7.0-8.0) and with 0-5 % NaCl (optimum 1-2 %, w/v) and 0.5-10 % sea salts (optimum 2-3 %, w/v). Growth of strain CF17(T) could be stimulated prominently by supplementing the growth medium with the autoclaved supernatant of a culture of strain CF5, which was isolated from the same sample along with strain CF17(T). The cell morphology of strain CF17(T) was a bean-shaped rod consisting of a swollen end and a long prostheca. The phylogenetic analysis of 16S rRNA gene sequences indicated that strain CF17(T) clustered with Gemmobacter nectariphilus DSM 15620(T) within the genus Gemmobacter. The DNA G+C content of strain CF17(T) was 61.4 mol%. The respiratory quinone was ubiquinone Q-10. The major fatty acids included C18 : 1ω7c and C18 : 0. The polar lipids of strain CF17(T) consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, two uncharacterized phospholipids, one uncharacterized aminolipid, three uncharacterized glycolipids and one uncharacterized lipid. On the basis of phenotypic, phylogenetic and chemotaxonomic data, strain CF17(T) ( = CGMCC 1.11024(T) = JCM 18498(T)) is considered to represent a novel species of the genus Gemmobacter, for which the name Gemmobacter megaterium sp. nov. is proposed.


Assuntos
Filogenia , Rhodobacteraceae/classificação , Alga Marinha/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Água do Mar , Análise de Sequência de DNA , Ubiquinona/química
11.
J Biol Chem ; 288(47): 34041-34051, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24106267

RESUMO

The Hippo tumor suppressor pathway plays important roles in organ size control through Lats1/2 mediated phosphorylation of the YAP/TAZ transcription co-activators. However, YAP/TAZ independent functions of the Hippo pathway are largely unknown. Here we report a novel role of the Hippo pathway in angiogenesis. Angiomotin p130 isoform (AMOTp130) is phosphorylated on a conserved HXRXXS motif by Lats1/2 downstream of GPCR signaling. Phosphorylation disrupts AMOT interaction with F-actin and correlates with reduced F-actin stress fibers and focal adhesions. Furthermore, phosphorylation of AMOT by Lats1/2 inhibits endothelial cell migration in vitro and angiogenesis in zebrafish embryos in vivo. Thus AMOT is a direct substrate of Lats1/2 mediating functions of the Hippo pathway in endothelial cell migration and angiogenesis.


Assuntos
Actinas/metabolismo , Movimento Celular/fisiologia , Embrião não Mamífero/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Actinas/genética , Motivos de Aminoácidos , Angiomotinas , Animais , Células COS , Chlorocebus aethiops , Embrião não Mamífero/citologia , Adesões Focais/genética , Adesões Focais/metabolismo , Células HEK293 , Via de Sinalização Hippo , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Proteínas dos Microfilamentos , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinase 3 , Proteínas Supressoras de Tumor/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Protein Cell ; 3(4): 291-304, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22549587

RESUMO

Stem cells and progenitor cells are the cells of origin for multi-cellular organisms and organs. They play key roles during development and their dysregulation gives rise to human diseases such as cancer. The recent development of induced pluripotent stem cell (iPSC) technology which converts somatic cells to stem-like cells holds great promise for regenerative medicine. Nevertheless, the understanding of proliferation, differentiation, and self-renewal of stem cells and organ-specific progenitor cells is far from clear. Recently, the Hippo pathway was demonstrated to play important roles in these processes. The Hippo pathway is a newly established signaling pathway with critical functions in limiting organ size and suppressing tumorigenesis. This pathway was first found to inhibit cell proliferation and promote apoptosis, therefore regulating cell number and organ size in both Drosophila and mammals. However, in several organs, disturbance of the pathway leads to specific expansion of the progenitor cell compartment and manipulation of the pathway in embryonic stem cells strongly affects their self-renewal and differentiation. In this review, we summarize current observations on roles of the Hippo pathway in different types of stem cells and discuss how these findings changed our view on the Hippo pathway in organ development and tumorigenesis.


Assuntos
Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/citologia , Animais , Diferenciação Celular , Proliferação de Células , Drosophila , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA