RESUMO
A new difference-spectroscopy method is introduced for measuring T1 relaxation times. It is inspired by the earlier work of Freeman and Hill and eliminates the need for recording signal intensities at thermodynamic equilibrium. The new method is termed SIP-R (Split-Inversion Pulse and Recovery) and reduces the number of refinable parameters in the curve fitting process of relaxation-delay-dependent signal intensities by using two instead of the three parameters typically used in the standard inversion-recovery sequence. The SIP-R method preserves the dynamic range of measurement of the standard inversion-recovery method but converts the rise-to-maximum mathematical functionality of the recorded data into a decay-to-zero functionality. The decay-to-zero functionality renders the SIP-R sequence advantageous for inverse Laplace transformation numerical optimizations. The new technique proves to be extremely robust with respect to pulse imperfections, pulse-power changes during the pulse sequence, pulse-width miscalibrations, resonance offsets, and radiofrequency field variations. It also compensates for acoustic ring-down effects and proves reliable for measurements with inhomogeneously broadened signals up to several kilohertz linewidth. 1H NMR experiments with methane gas at pressures up to 50 atm in toroid-cavity pressure vessel probes and in the presence of the methane-to-methanol conversion catalyst Cu-ZnO/Al2O3 are used to show the usefulness of the new method for relaxation time investigations under pressure, at strong radiofrequency field gradients, and in the presence of paramagnetic materials.
Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodosRESUMO
With the increased sensitivity of modern nuclear magnetic resonance (NMR) spectrometers, the minimum amount needed for chemical-shift referencing of NMR spectra has decreased to a point where a few microliters can be sufficient to observe a reference signal. The reduction in the amount of required reference material is the basis for the NMR Capillary-tube Package (CapPack) platform that utilizes capillary tubes with inner diameters smaller than 150 µm as NMR-tube inserts for external reference standards. It is shown how commercially available electrophoresis capillary tubes with outer diameters of 360 µm are filled with reference liquids or solutions and then permanently sealed by the arc discharge plasma of a commercially available fusion splicer normally employed for joining optical fibers. The permanently sealed capillaries can be used as external references for chemical-shift, signal-to-noise, resolution, and concentration calibration. Combining a number of permanently sealed capillaries to form CapPack devices leads to additional applications such as performance evaluation of NMR spectrometers and NMR pulse sequences. A 10-capillary-tube side-by-side Gradient CapPack device is used in combination with one or two constant gradients, produced by room-temperature shim coils, to monitor the excitation profiles of shaped pulses. One example illustrates the performance of hyperbolic secant (sech) pulses in the EXponentially Converging Eradication Pulse Train (EXCEPT) solvent suppression sequence. The excitation profile of the pulse sequence is obtained in a single gradient NMR experiment. A clustered T 1 CapPack device is introduced consisting of a coaxial NMR-tube insert that holds seven capillary tubes filled with aqueous solutions of different concentrations of the paramagnetic relaxation agent copper(ii) sulfate (CuSO4). The different CuSO4 concentrations lead to spin-lattice relaxation times in the seven capillary tubes that cover a range which extends to more than an order of magnitude. Clustered T 1 CapPack devices are best suited to quantify the effects that relaxation has on magnetizations and coherences during the execution of NMR experiments, which is demonstrated for the order-of-magnitude T 1 insensitivity of signal suppression with EXCEPT.
RESUMO
Selective presaturation is a common technique for suppressing excessive solvent signals during proton NMR analysis of dilute samples in protic solvents. When the solvent T1 relaxation time constant varies within a series of samples, parameters for the presaturation sequence must often be re-adjusted for each sample. The EXCEPT (EXponentially Converging Eradication Pulse Train) presaturation pulse sequence was developed to eliminate time consuming pulse-parameter re-optimization as long as the variation in the solvent's T1 remains within an order of magnitude. EXCEPT consists of frequency-selective inversion pulses with progressively decreasing interpulse delays. The interpulse delays were optimized to encompass T1 relaxation times ranging from 1 to 10s, but they can be easily adjusted by a single factor for other ranges that fall within an order of magnitude with respect to T1. Sequences with different numbers of inversion pulses were tested to maximize suppression while minimizing the number of pulses and thus the total time needed for suppression. The EXCEPT-16 experiment, where 16 denotes the number of inversion pulses, was found satisfactory for many standard applications. Experimental results demonstrate that EXCEPT provides effective T1-insensitive solvent suppression as predicted by the theory. The robustness of EXCEPT with respect to changes in solvent T1 allows NMR investigations to be carried out for a series of samples without the need for pulse-parameter re-optimization for each sample.
Assuntos
Algoritmos , Biopolímeros/análise , Biopolímeros/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Processamento de Sinais Assistido por Computador , Solventes/química , Artefatos , Simulação por Computador , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
A Cu(I) catalyst (1), supported by a framework of strongly basic guanidinato moieties, mediates nitrene-transfer from PhIâNR sources to a wide variety of aliphatic hydrocarbons (C-H amination or amidination in the presence of nitriles) and olefins (aziridination). Product profiles are consistent with a stepwise rather than concerted C-N bond formation. Mechanistic investigations with the aid of Hammett plots, kinetic isotope effects, labeled stereochemical probes, and radical traps and clocks allow us to conclude that carboradical intermediates play a major role and are generated by hydrogen-atom abstraction from substrate C-H bonds or initial nitrene-addition to one of the olefinic carbons. Subsequent processes include solvent-caged radical recombination to afford the major amination and aziridination products but also one-electron oxidation of diffusively free carboradicals to generate amidination products due to carbocation participation. Analyses of metal- and ligand-centered events by variable temperature electrospray mass spectrometry, cyclic voltammetry, and electron paramagnetic resonance spectroscopy, coupled with computational studies, indicate that an active, but still elusive, copper-nitrene (S = 1) intermediate initially abstracts a hydrogen atom from, or adds nitrene to, C-H and CâC bonds, respectively, followed by a spin flip and radical rebound to afford intra- and intermolecular C-N containing products.