Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Eur J Med Res ; 29(1): 21, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178221

RESUMO

Kidney disease is a progressive and irreversible condition in which immunity is a contributing factor that endangers human health. It is widely acknowledged that macrophages play a significant role in developing and causing numerous kidney diseases. The increasing focus on the mechanism by which macrophages express apoptosis inhibitor of macrophages (AIM) in renal diseases has been observed. AIM is an apoptosis inhibitor that stops different things that cause apoptosis from working. This keeps AIM-bound cell types alive. Notably, the maintenance of immune cell viability regulates immunity. As our investigation progressed, we concluded that AIM has two sides when it comes to renal diseases. AIM can modulate renal phagocytosis, expedite the elimination of renal tubular cell fragments, and mitigate tissue injury. AIM can additionally exacerbate the development of renal fibrosis and kidney disease by prolonging inflammation. IgA nephropathy (IgAN) may also worsen faster if more protein is in the urine. This is because IgA and immunoglobulin M are found together and expressed. In the review, we provide a comprehensive overview of prior research and concentrate on the impacts of AIM on diverse subcategories of nephropathies. We discovered that AIM is closely associated with renal diseases by playing a positive or negative role in the onset, progression, or cure of kidney disease. AIM is thus a potentially effective therapeutic target for kidney diseases.


Assuntos
Glomerulonefrite por IGA , Nefropatias , Humanos , Rim/metabolismo , Macrófagos/metabolismo , Fagocitose , Apoptose , Nefropatias/metabolismo
2.
Ann Med ; 55(2): 2284890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38039549

RESUMO

Background: Cardiovascular disease (CVD) is widely observed in modern society. CVDs are responsible for the majority of fatalities, with heart attacks and strokes accounting for approximately 80% of these cases. Furthermore, a significant proportion of these deaths, precisely one-third, occurs in individuals under 70. Metabolic syndrome encompasses a range of diseases characterized by various physiological dysfunctions. These include increased inflammation in adipose tissue, enhanced cholesterol synthesis in the liver, impaired insulin secretion, insulin resistance, compromised vascular tone and integrity, endothelial dysfunction, and atheroma formation. These factors contribute to the development of metabolic disorders and significantly increase the likelihood of experiencing cardiovascular complications.Method: We selected studies that proposed hypotheses regarding metabolic disease syndrome and cardiovascular disease (CVD) and the role of Nrf2/HO-1 and factor regulation in CVD research investigations based on our searches of Medline and PubMed.Results: A total of 118 articles were included in the review, 16 of which exclusively addressed hypotheses about the role of Nrf2 on Glucose regulation, while 16 involved Cholesterol regulation. Likewise, 14 references were used to prove the importance of mitochondria on Nrf2. Multiple studies have provided evidence suggesting the involvement of Nrf2/HO-1 in various physiological processes, including metabolism and immune response. A total of 48 research articles and reviews have been used to highlight the role of metabolic syndrome and CVD.Conclusion: This review provides an overview of the literature on Nrf2/HO-1 and its role in metabolic disease syndrome and CVD.


Assuntos
Doenças Cardiovasculares , Doenças Metabólicas , Síndrome Metabólica , Humanos , Síndrome Metabólica/complicações , Heme Oxigenase-1/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Colesterol
3.
Curr Med Chem ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37861024

RESUMO

Kidney diseases, particularly Acute Kidney Injury (AKI) and Chronic Kidney Disease (CKD), are identified as global public health issues affecting millions of individuals. In addition, the frequency of renal diseases in the population has increased dramatically and rapidly in recent years. Renal disorders have become a significant public health burden. The pathophysiology of renal diseases is significantly connected with renal cell death, including apoptosis, necrosis, necroptosis, ferroptosis, pyroptosis, and autophagy, as is now recognized. Unlike other forms of cell death, pyroptosis is a unique planned cell death (PCD). Scientists have proven that pyroptosis is crucial in developing various disorders, and this phenomenon is gaining increasing attention. It is considered a novel method of inflammatory cell death. Intriguingly, inflammation is among the most significant pathological characteristics of renal disease. This study investigates the effects of pyroptosis on Acute Kidney Injury (AKI), Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN), Immunoglobulin A (IgA) Nephropathy, and Lupus Nephritis (LN) to identify novel therapeutic targets for kidney diseases.

4.
Oxid Med Cell Longev ; 2023: 3532756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113743

RESUMO

Hematopoietic stem cell transplantation (HSCT), also known as bone marrow transplantation, has curative potential for various hematologic malignancies but is associated with risks such as graft-versus-host disease (GvHD), severe bloodstream infection, viral pneumonia, idiopathic pneumonia syndrome (IPS), lung fibrosis, and sinusoidal obstruction syndrome (SOS), which severely deteriorate clinical outcomes and limit the wide application of HSCT. Recent research has provided important insights into the effects of gut microbiota and oxidative stress (OS) on HSCT complications. Therefore, based on recent studies, we describe intestinal dysbiosis and OS in patients with HSCT and review recent molecular findings underlying the causal relationships of gut microbiota, OS, and transplant-related complications, focusing particularly on the involvement of gut microbiota-mediated OS in postengraftment complications. Also, we discuss the use of antioxidative and anti-inflammatory probiotics to manipulate gut microbiota and OS, which have been associated with promising effects in improving HSCT outcomes.


Assuntos
Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas , Pneumonia Viral , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Medula Óssea , Estresse Oxidativo
5.
Nat Commun ; 14(1): 1436, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918518

RESUMO

Disturbed inhibitory synaptic transmission has functional impacts on neurodevelopmental and psychiatric disorders. An essential mechanism for modulating inhibitory synaptic transmission is alteration of the postsynaptic abundance of GABAARs, which are stabilized by postsynaptic scaffold proteins and recruited by presynaptic signals. However, how GABAergic neurons trigger signals to transsynaptically recruit GABAARs remains elusive. Here, we show that UNC-43/CaMKII functions at GABAergic neurons to recruit GABAARs and modulate inhibitory synaptic transmission at C. elegans neuromuscular junctions. We demonstrate that UNC-43 promotes presynaptic MADD-4B/Punctin secretion and NRX-1α/Neurexin surface delivery. Together, MADD-4B and NRX-1α recruit postsynaptic NLG-1/Neuroligin and stabilize GABAARs. Further, the excitation of GABAergic neurons potentiates the recruitment of NLG-1-stabilized-GABAARs, which depends on UNC-43, MADD-4B, and NRX-1. These data all support that UNC-43 triggers MADD-4B and NRX-1α, which act as anterograde signals to recruit postsynaptic GABAARs. Thus, our findings elucidate a mechanism for pre- and postsynaptic communication and inhibitory synaptic transmission and plasticity.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Junção Neuromuscular/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
6.
Immun Ageing ; 19(1): 58, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384564

RESUMO

Immunosenescence is the deterioration of the innate and adaptive immune systems associated with aging and is primarily characterized by a reduction in T cell production and accumulation of atypical subsets. Age-related immunological dysfunction leads to impaired immune protection and persistent low-grade chronic inflammation, resulting in a decreased vaccination response and increased vulnerability to infection, cancer, cardiovascular disease, and autoimmune disease in the elderly. As the elderly constitute a growing proportion of the population with renal disease, immunosenescence is a normal aging process that is prevalent among older people. In addition, immunosenescence seems to be more pronounced in patients with kidney diseases than in healthy controls, as shown by severe chronic inflammation, accumulation of immune cells with the senescent phenotype (CD28- T cells, CD14+CD16+ monocytes), and proinflammatory cytokine production. Immunosenescence inhibits immunological clearance and renal tissue regeneration, thereby increasing the risk of permanent renal damage, infection, and cardiovascular events in patients with kidney disease, lowering the prognosis, and even influencing the efficacy of renal replacement treatment. Biological drugs (senomorphics and senolytics) target the aging immune system and exert renoprotective effects. This review aims to emphasize the features of immunosenescence and its influence on kidney diseases and immunotherapy, highlighting the future directions of kidney disease treatment using senescence-focused techniques.

7.
Front Physiol ; 13: 932693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299256

RESUMO

The most extensively and well-investigated sequences in the human genome are protein-coding genes, while large numbers of non-coding sequences exist in the human body and are even more diverse with more potential roles than coding sequences. With the unveiling of non-coding RNA research, long-stranded non-coding RNAs (lncRNAs), a class of transcripts >200 nucleotides in length primarily expressed in the nucleus and rarely in the cytoplasm, have drawn our attention. LncRNAs are involved in various levels of gene regulatory processes, including but not limited to promoter activity, epigenetics, translation and transcription efficiency, and intracellular transport. They are also dysregulated in various pathophysiological processes, especially in diseases and cancers involving genomic imprinting. In recent years, numerous studies have linked lncRNAs to the pathophysiology of various kidney diseases. This review summarizes the molecular mechanisms involved in lncRNAs, their impact on kidney diseases, and associated complications, as well as the value of lncRNAs as emerging biomarkers for the prevention and prognosis of kidney diseases, suggesting their potential as new therapeutic tools.

8.
Front Immunol ; 13: 826732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251009

RESUMO

Kidney disease encompasses a complex set of diseases that can aggravate or start systemic pathophysiological processes through their complex metabolic mechanisms and effects on body homoeostasis. The prevalence of kidney disease has increased dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune homeostasis and preventing autoimmune disease and tissue damage caused by excessive or unnecessary immune activation, including autoimmune kidney diseases. Recent studies have highlighted the critical role of metabolic reprogramming in controlling the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in limiting kidney transplant rejection and potentially promoting transplant tolerance. Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis, glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in the development of renal diseases by modulating the function and proliferation of Treg cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for renal disease therapy. In this review, we provide a new perspective on the role of Treg cell metabolism in renal diseases by presenting the renal microenvironment、relevant metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various kidney diseases.


Assuntos
Doenças Autoimunes , Nefropatias , Doenças Autoimunes/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Nefropatias/metabolismo , Masculino , Linfócitos T Reguladores , Tolerância ao Transplante
9.
Front Med (Lausanne) ; 8: 708453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504854

RESUMO

Kidney disease is a general term for heterogeneous damage that affects the function and the structure of the kidneys. The rising incidence of kidney diseases represents a considerable burden on the healthcare system, so the development of new drugs and the identification of novel therapeutic targets are urgently needed. The pathophysiology of kidney diseases is complex and involves multiple processes, including inflammation, autophagy, cell-cycle progression, and oxidative stress. Heme oxygenase-1 (HO-1), an enzyme involved in the process of heme degradation, has attracted widespread attention in recent years due to its cytoprotective properties. As an enzyme with known anti-oxidative functions, HO-1 plays an indispensable role in the regulation of oxidative stress and is involved in the pathogenesis of several kidney diseases. Moreover, current studies have revealed that HO-1 can affect cell proliferation, cell maturation, and other metabolic processes, thereby altering the function of immune cells. Many strategies, such as the administration of HO-1-overexpressing macrophages, use of phytochemicals, and carbon monoxide-based therapies, have been developed to target HO-1 in a variety of nephropathological animal models, indicating that HO-1 is a promising protein for the treatment of kidney diseases. Here, we briefly review the effects of HO-1 induction on specific immune cell populations with the aim of exploring the potential therapeutic roles of HO-1 and designing HO-1-based therapeutic strategies for the treatment of kidney diseases.

10.
Front Immunol ; 12: 699684, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408748

RESUMO

Systemic lupus erythematosus (SLE) is an archetype autoimmune disease characterized by a myriad of immunoregulatory abnormalities that drives injury to multiple tissues and organs. Due to the involvement of various immune cells, inflammatory cytokines, and related signaling pathways, researchers have spent a great deal of effort to clarify the complex etiology and pathogenesis of SLE. Nevertheless, current understanding of the pathogenesis of SLE is still in the early stages, and available nonspecific treatment options for SLE patients remain unsatisfactory. First discovered in 1993, microRNAs (miRNAs) are small RNA molecules that control the expression of 1/3 of human genes at the post-transcriptional level and play various roles in gene regulation. The aberrant expression of miRNAs in SLE patients has been intensively studied, and further studies have suggested that these miRNAs may be potentially relevant to abnormal immune responses and disease progression in SLE. The aim of this review was to summarize the specific miRNAs that have been observed aberrantly expressed in several important pathogenetic processes in SLE, such as DCs abnormalities, overactivation and autoantibody production of B cells, aberrant activation of CD4+ T cells, breakdown of immune tolerance, and abnormally increased production of inflammatory cytokines. Our summary highlights a novel perspective on the intricate regulatory network of SLE, which helps to enrich our understanding of this disorder and ignite future interest in evaluating the molecular regulation of miRNAs in autoimmunity SLE.


Assuntos
Lúpus Eritematoso Sistêmico , MicroRNAs , Humanos
11.
J Immunol Res ; 2021: 5516035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095319

RESUMO

The human gut microbiota is a complex cluster composed of 100 trillion microorganisms, which holds a symbiotic relationship with the host under normal circumstances. Intestinal flora can facilitate the treatment of human metabolic dysfunctions and interact with the intestinal tract, which could influence intestinal tolerance, immunity, and sensitivity to inflammation. In recent years, significant interests have evolved on the association of intestinal microbiota and kidney diseases within the academic circle. Abnormal changes in intestinal microbiota, known as dysbiosis, can affect the integrity of the intestinal barrier, resulting in the bacterial translocation, production, and accumulation of dysbiotic gut-derived metabolites, such as urea, indoxyl sulfate (IS), and p-cresyl sulfate (PCS). These processes lead to the abnormal activation of immune cells; overproduction of antibodies, immune complexes, and inflammatory factors; and inflammatory cell infiltration that can directly or indirectly cause damage to the renal parenchyma. The aim of this review is to summarize the role of intestinal flora in the development and progression of several renal diseases, such as lupus nephritis, chronic kidney disease, diabetic nephropathy, and renal ischemia-reperfusion injury. Further research on these mechanisms should provide insights into the therapeutic potential of regulating intestinal flora and intervening related molecular targets for the abovementioned nephropathy.


Assuntos
Disbiose/complicações , Microbioma Gastrointestinal/imunologia , Imunomodulação , Insuficiência Renal Crônica/imunologia , Translocação Bacteriana/imunologia , Disbiose/imunologia , Disbiose/microbiologia , Disbiose/patologia , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Rim/imunologia , Rim/patologia , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA