Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(2): e0194823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299843

RESUMO

The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.


Assuntos
Membrana Celular , Fator de Iniciação 4E em Eucariotos , Vírus da Diarreia Epidêmica Suína , Biossíntese de Proteínas , Internalização do Vírus , Animais , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Cadeias beta de Integrinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Tetraspaninas/metabolismo , Células Vero
2.
J Med Virol ; 95(1): e28226, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36251738

RESUMO

Host-targeting antivirals (HTAs) have received increasing attention for their potential as broad-spectrum antivirals that pose relatively low risk of developing drug resistance. The repurposing of pharmaceutical drugs for use as antivirals is emerging as a cost- and time- efficient approach to developing HTAs for the treatment of a variety of viral infections. In this study, we used a virus titer method to screen 30 small molecules for antiviral activity against Herpes simplex virus-1 (HSV-1). We found that the small molecule RAF265, an anticancer drug that has been shown to be a potent inhibitor of B-RAF V600E, reduced viral loads of HSV-1 by 4 orders of magnitude in Vero cells and reduced virus proliferation in vivo. RAF265 mediated cytoskeleton rearrangement and targeted the host cell's translation machinery, which suggests that the antiviral activity of RAF265 may be attributed to a dual inhibition strategy. This study offers a starting point for further advances toward clinical development of antivirals against HSV-1.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Animais , Chlorocebus aethiops , Humanos , Células Vero , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Citoesqueleto
3.
Environ Sci Technol ; 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35904357

RESUMO

The transmission of most respiratory pathogens, including SARS-CoV-2, occurs via virus-containing respiratory droplets, and thus, factors that affect virus viability in droplet residues on surfaces are of critical medical and public health importance. Relative humidity (RH) is known to play a role in virus survival, with a U-shaped relationship between RH and virus viability. The mechanisms affecting virus viability in droplet residues, however, are unclear. This study examines the structure and evaporation dynamics of virus-containing saliva droplets on fomites and their impact on virus viability using four model viruses: vesicular stomatitis virus, herpes simplex virus 1, Newcastle disease virus, and coronavirus HCoV-OC43. The results support the hypothesis that the direct contact of antiviral proteins and virions within the "coffee ring" region of the droplet residue gives rise to the observed U-shaped relationship between virus viability and RH. Viruses survive much better at low and high RH, and their viability is substantially reduced at intermediate RH. A phenomenological theory explaining this phenomenon and a quantitative model analyzing and correlating the experimentally measured virus survivability are developed on the basis of the observations. The mechanisms by which RH affects virus viability are explored. At intermediate RH, antiviral proteins have optimal influence on virions because of their largest contact time and overlap area, which leads to the lowest level of virus activity.

4.
Antiviral Res ; 142: 1-11, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28286234

RESUMO

Viral infection induces translocation of the nucleolar protein GLTSCR2 from the nucleus to the cytoplasm, resulting in attenuation of the type I interferon IFN-ß. Addressing the role of GLTSCR2 in viral replication, we detect that knocking down GLTSCR2 by shRNAs results in significant suppression of viral replication in mammalian and chicken cells. Injection of chicken embryo with the GLTSCR2-specific shRNA-1370 simultaneously or 24 h prior to infection with Newcastle disease virus (NDV) substantially reduces viral replication in chicken embryo fibroblasts. Injection of shRNA-1370 into chicken embryo also reduces the replication of avian influenza virus (AIV). In contrast, GLTSCR2-derived protein G4-T, forming α-helical dimers, increases replication of seven various DNA and RNA viruses in cells. Our studies reveal that alteration of the function of cellular GLTSCR2 plays a role in supporting viral replication. GLTSCR2 should be seriously considered as a therapeutic target for developing broad spectrum antiviral agents to effectively control viral infection.


Assuntos
Antivirais/farmacologia , Proteínas Supressoras de Tumor/efeitos dos fármacos , Proteínas Supressoras de Tumor/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Animais , Linhagem Celular , Embrião de Galinha , Chlorocebus aethiops , Vírus de DNA/efeitos dos fármacos , Cães , Fibroblastos/virologia , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Interferon Tipo I/metabolismo , Interferon-alfa/metabolismo , Células Madin Darby de Rim Canino , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/efeitos dos fármacos , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/fisiologia , Conformação Proteica em alfa-Hélice/efeitos dos fármacos , Vírus de RNA/efeitos dos fármacos , RNA Interferente Pequeno/genética , Proteínas Recombinantes , Proteínas Supressoras de Tumor/genética , Células Vero , Replicação Viral/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia
5.
J Virol Methods ; 199: 11-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24412629

RESUMO

Newcastle disease virus (NDV) of paramyxovirus and Marek's disease virus (MDV) of herpesvirus, two of the most serious threats to the poultry industry, can give rise to complex co-infections that hinder diagnosis and prevention. In the current study, two different peptides, derived from the MDV gH (gHH2L) and gB (gBH3), respectively, exhibit antiviral activity against NDV in vitro. The potent inhibitory effect of heptad repeat 2 from fusion glycoprotein of the NDV on MDV infection also has been demonstrated. Plaque formation and embryo infectivity assays confirmed these antiviral results. Furthermore, each tandem peptide consisting of two motifs from different viruses exhibits more potent antiviral activity than the constituent peptides. The current work provides a new strategy for developing novel peptides and vaccines against virus infection and co-infections.


Assuntos
Antivirais/farmacologia , Glicoproteínas/farmacologia , Mardivirus/efeitos dos fármacos , Vírus da Doença de Newcastle/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas Virais de Fusão/farmacologia , Animais , Antivirais/uso terapêutico , Linhagem Celular , Embrião de Galinha , Glicoproteínas/genética , Glicoproteínas/uso terapêutico , Mardivirus/genética , Doença de Marek/prevenção & controle , Testes de Sensibilidade Microbiana , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/genética , Peptídeos/genética , Peptídeos/uso terapêutico , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/uso terapêutico , Ensaio de Placa Viral
6.
J Virol ; 87(16): 9223-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23804636

RESUMO

In previous work, we designed peptides that showed potent inhibition of Newcastle disease virus (NDV) and infectious bronchitis virus (IBV) infections in chicken embryos. In this study, we demonstrate that peptides modified with cholesterol or 3 U of polyethylene glycol (PEG3) conjugated to the peptides' N termini showed even more promising antiviral activities when tested in animal models. Both cholesterol- and cholesterol-PEG3-tagged peptides were able to protect chicken embryos from infection with different serotypes of NDV and IBV when administered 12 h prior to virus inoculation. In comparison, the untagged peptides required intervention closer to the time of viral inoculation to achieve a similar level of protection. Intramuscular injection of cholesterol-tagged peptide at 1.6 mg/kg 1 day before virus infection and then three times at 3-day intervals after viral inoculation protected 70% of the chickens from NDV infection. We further demonstrate that the cholesterol-tagged peptide has an in vivo half-life greater than that of untagged peptides. It also has the potential to cross the blood-brain barrier to enter the avian central nervous system (CNS). Finally, we show that the cholesterol-tagged peptide could play a role before the viral fusion peptide's insertion into the host cell and thereby target an earlier stage of fusion glycoprotein activation. Our findings are of importance for the further development of antivirals with broad-spectrum protective effects.


Assuntos
Antivirais/farmacologia , Colesterol/metabolismo , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Vírus da Doença de Newcastle/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas Virais de Fusão/antagonistas & inibidores , Animais , Antivirais/administração & dosagem , Embrião de Galinha , Colesterol/química , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Injeções Intramusculares , Doença de Newcastle/tratamento farmacológico , Doença de Newcastle/prevenção & controle , Peptídeos/administração & dosagem , Peptídeos/química , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Análise de Sobrevida
7.
PLoS One ; 8(2): e54761, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405092

RESUMO

Our previous study reported that both glycoproteins gB and gH of the herpesvirus Marek's disease virus (MDV) contain eleven potential heptad repeat domains. These domains overlap with α-helix-enriched hydrophobic regions, including the gH-derived HR1 (gHH1) and HR3 (gHH3) and gB-derived HR1 (gBH1) regions, which demonstrate effective antiviral activity, with 50% inhibitory concentrations (IC(50)) of less than 12 µM. Plaque formation and chicken embryo infection assays confirmed these results. In this study, biochemical and biophysical analyses detected potential interactions between these peptides. gHH1, gHH3, and gBH1 were found to interact with each other in pairs. The complex formed by gHH3 and gBH1 showed the most stable interaction at a molar ratio of 1:3, the binding between gHH1 and gBH1 was relatively weak, and no interaction was observed between the three HR peptides. These results indicate that gHH3 and gBH1 are likely the key contributors to the interaction between gB and gH. Furthermore, each HR peptide from herpesvirus glycoproteins did not effectively inhibit virus infection compared with peptides from a class I enveloped virus. In this report, the HR mimic peptide modified with a double glutamic acid (EE) or a double lysine (KK) at the non-interactive sites (i.e., solvent-accessible sites) did not noticeably affect the antiviral activity compared with the wild-type HR peptide, whereas tandem peptides from gH-derived gHH1 and gB-derived gBH1 (i.e., gBH1-Linker-gHH1) produced efficient antiviral effects, unlike the individual peptides. The proposed interpretation of inhibition of entry has been addressed. Our results support the hypothesis that the interaction domain between glycoproteins gH and gB is a critical target in the design of inhibitors of herpesvirus infection.


Assuntos
Antígenos Virais/metabolismo , Herpesvirus Galináceo 2/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Animais , Antivirais/química , Antivirais/farmacologia , Embrião de Galinha , Fibroblastos/virologia , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
Virology ; 416(1-2): 65-74, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21601229

RESUMO

Mixed virus infections can cause livestock losses that are more devastating than those caused by single virus infections. Newcastle disease virus (NDV) and infectious bronchitis virus (IBV), serious threats to the poultry industry, can give rise to complex mixed infections that hinder diagnosis and prevention. In this study, we show that newly designed peptides, which are based on the heptad repeat (HR) region of the fusion glycoproteins from NDV and IBV, have more potent antiviral activity than the mother HR peptides. Plaque formation and chicken embryo infectivity assays confirmed these results. The novel peptides completely inhibited single virus infections and mixed infections caused by NDV and IBV. Furthermore, we assessed cell toxicity and possible targets for the peptides, thereby strengthening the notion that HR2 is an attractive site for therapeutic intervention. These results suggest the possibility of designing a relatively broad-spectrum class of antiviral peptides that can reduce the effects of mixed-infections.


Assuntos
Antivirais/farmacologia , Vírus da Bronquite Infecciosa/metabolismo , Vírus da Doença de Newcastle/metabolismo , Proteínas Recombinantes/farmacologia , Sequência de Aminoácidos , Animais , Antivirais/química , Embrião de Galinha , Vírus da Bronquite Infecciosa/genética , Modelos Moleculares , Vírus da Doença de Newcastle/genética , Conformação Proteica , Proteínas Recombinantes/química , Ensaio de Placa Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA