Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681875

RESUMO

Compensatory hepatocyte proliferation and other liver regenerative processes are activated to sustain normal physiological function after liver injury. A major mitogen for liver regeneration is hepatocyte growth factor (HGF), and a previous study indicated that progranulin could modulate c-met, the receptor for HGF, to initiate hepatic outgrowth from hepatoblasts during embryonic development. However, a role for progranulin in compensatory hepatocyte proliferation has not been shown previously. Therefore, this study was undertaken to clarify whether progranulin plays a regulatory role during liver regeneration. To this end, we established a partial hepatectomy regeneration model in adult zebrafish that express a liver-specific fluorescent reporter. Using this model, we found that loss of progranulin A (GrnA) function by intraperitoneal-injection of a Vivo-Morpholino impaired and delayed liver regeneration after partial hepatectomy. Furthermore, transcriptome analysis and confirmatory quantitative real-time PCR suggested that cell cycle progression and cell proliferation was not as active in the morphants as controls, which may have been the result of comparative downregulation of the HGF/c-met axis by 36 h after partial hepatectomy. Finally, liver-specific overexpression of GrnA in transgenic zebrafish caused more abundant cell proliferation after partial hepatectomy compared to wild types. Thus, we conclude that GrnA positively regulates HGF/c-met signaling to promote hepatocyte proliferation during liver regeneration.


Assuntos
Hepatectomia/métodos , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/citologia , Regeneração Hepática , Progranulinas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Proliferação de Células , Fator de Crescimento de Hepatócito/genética , Hepatócitos/metabolismo , Organogênese , Progranulinas/genética , Proteínas Proto-Oncogênicas c-met/genética , Transdução de Sinais , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
2.
PLoS One ; 15(7): e0236601, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730353

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), exhibit antibacterial and anti-inflammatory activities. Furthermore, diets rich in n-3 PUFAs are known to improve disease resistance and limit pathogen infection in commercial aquaculture fishes. In this study, we examined the effects of transgenic overexpression of n-3 PUFA biosynthesis genes on the physiological response to bacterial infection in tilapia. We first established tilapia strains with single or dual expression of salmon delta-5 desaturase and/or delta-6 desaturase and then challenged the fish with Vibrio vulnificus infection. Interestingly, our data suggest that n-3 PUFA-mediated alterations in gut microbiota may be important in determining disease outcome via effects on immune response of the host. Both liver- and muscle-specific single and dual expression of delta-5 desaturase and delta-6 desaturase resulted in higher n-3 PUFA content in transgenic fish fed with a LO basal diet. The enrichment of n-3 PUFAs in dual-transgenic fish is likely responsible for their improved survival rate and comparatively reduced expression of inflammation- and immune-associated genes after V. vulnificus infection. Gut microbiome analysis further revealed that dual-transgenic tilapia had high gut microbiota diversity, with low levels of inflammation-associated microbiota (i.e., Prevotellaceae). Thus, our findings indicate that dual expression of transgenic delta-5 and delta-6 desaturase in tilapia enhances disease resistance, an effect that is associated with increased levels of n-3 PUFAs and altered gut microbiota composition.


Assuntos
Resistência à Doença , Ácidos Graxos Dessaturases/metabolismo , Proteínas de Peixes/metabolismo , Microbioma Gastrointestinal , Linoleoil-CoA Desaturase/metabolismo , Tilápia/microbiologia , Vibrio vulnificus/patogenicidade , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/microbiologia , Dessaturase de Ácido Graxo Delta-5 , Dieta/veterinária , Análise Discriminante , Resistência à Doença/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-3/metabolismo , Doenças dos Peixes/microbiologia , Doenças dos Peixes/patologia , Proteínas de Peixes/genética , Expressão Gênica , Análise dos Mínimos Quadrados , Linoleoil-CoA Desaturase/genética , Tilápia/genética , Vibrioses/patologia , Vibrioses/veterinária
3.
PLoS One ; 12(5): e0177887, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28531199

RESUMO

MicroRNAs (miRs) are mRNA-regulatory molecules that fine-tune gene expression and modulate both processes of development and tumorigenesis. Our previous studies identified progranulin A (GrnA) as a growth factor which induces zebrafish hepatic outgrowth through MET signaling. We also found that miR-145 is one of potential fine-tuning regulators of GrnA involved in embryonic hepatic outgrowth. The low level of miR-145 seen in hepatocarinogenesis has been shown to promote pathological liver growth. However, little is known about the regulatory mechanism of miR-145 in embryonic liver development. In this study, we demonstrate a significant decrease in miR-145 expression during hepatogenesis. We modulate miR-145 expression in zebrafish embryos by injection with a miR-145 mimic or a miR-145 hairpin inhibitor. Altered embryonic liver outgrowth is observed in response to miR-145 expression modulation. We also confirm a critical role of miR-145 in hepatic outgrowth by using whole-mount in situ hybridization. Loss of miR-145 expression in embryos results in hepatic cell proliferation, and vice versa. Furthermore, we demonstrate that GrnA is a target of miR-145 and GrnA-induced MET signaling is also regulated by miR-145 as determined by luciferase reporter assay and gene expression analysis, respectively. In addition, co-injection of GrnA mRNA with miR-145 mimic or MO-GrnA with miR-145 inhibitor restores the liver defects caused by dysregulation of miR-145 expression. In conclusion, our findings suggest an important role of miR-145 in regulating GrnA-dependent hepatic outgrowth in zebrafish embryonic development.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Fígado/crescimento & desenvolvimento , MicroRNAs/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Linhagem Celular , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Hepatócitos/citologia , Tamanho do Órgão , Transdução de Sinais , Peixe-Zebra/genética
4.
Sci Rep ; 3: 1176, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23378909

RESUMO

Myogenic progenitor cell (MPC) is responsible for postembryonic muscle growth and regeneration. Progranulin (PGRN) is a pluripotent growth factor that is correlated with neuromuscular disease, which is characterised by denervation, leading to muscle atrophy with an abnormal quantity and functional ability of MPC. However, the role of PGRN in MPC biology has yet to be elucidated. Here, we show that knockdown of zebrafish progranulin A (GrnA) resulted in a reduced number of MPC and impaired muscle growth. The decreased number of Pax7-positive MPCs could be restored by the ectopic expression of GrnA or MET. We further confirmed the requirement of GrnA in MPC activation during muscle regeneration by knockdown and transgenic line with muscle-specific overexpression of GrnA. In conclusion, we demonstrate a critical role for PGRN in the maintenance of MPC and suggest that muscle atrophy under PGRN loss may begin with MPC during postembryonic myogenesis.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Células-Tronco/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Apoptose , Proliferação de Células , Proteínas Cardiotóxicas de Elapídeos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Peptídeos e Proteínas de Sinalização Intercelular/genética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Fator de Transcrição PAX7/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Células-Tronco/citologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA