Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(8): 083110, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872938

RESUMO

X-ray calorimeters routinely achieve very high spectral resolution, typically a few eV full width at half maximum (FWHM). Measurements of calorimeter line shapes are usually dominated by the natural linewidth of most laboratory calibration sources. This compounds the data acquisition time necessary to statistically sample the instrumental line broadening and can add systematic uncertainty if the intrinsic line shape of the source is not well known. To address these issues, we have built a simple, compact monochromatic x-ray source using channel cut crystals. A commercial x-ray tube illuminates a pair of channel cut crystals that are aligned in a dispersive configuration to select the Kα1 line of the x-ray tube anode material. The entire device, including the x-ray tube, can be easily hand-carried by one person and may be positioned manually or using a mechanical translation stage. The output monochromatic beam provides a collimated image of the anode spot with magnification of unity in the dispersion direction (typically 100 µm-200 µm for the x-ray tubes used here) and is unfocused in the cross-dispersion direction so that the source image in the detector plane appears as a line. We measured output count rates as high as 10 count/s/pixel for the Hitomi soft x-ray spectrometer, which had 819 µm square pixels. We implemented different monochromator designs for energies of 5.4 keV (one design) and 8.0 keV (two designs), which have effective theoretical FWHM energy resolution of 0.125 eV, 0.197 eV, and 0.086 eV, respectively; these are well-suited for optimal calibration measurements of state-of-the art x-ray calorimeters. We measured an upper limit for the energy resolution of our Cr Kα1 monochromator of 0.7 eV FWHM at 5.4 keV, consistent with the theoretical prediction of 0.125 eV.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28804229

RESUMO

We are developing superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting specifications of X-ray imaging spectrometers including high count-rate, high energy resolution, and large field-of-view. In particular, a focal plane composed of two sub-arrays: one of fine-pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit (X-IFU) instrument on the European Space Agency's Athena mission. We have based the sub-arrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all gold X-ray absorber on 50 and 75 micron scales where the Mo/Au TES sits atop a thick metal heatsinking layer have shown high resolution and can accommodate high count-rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au and an added bismuth layer in a 250 micron square absorber. To tune the parameters of each sub-array requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single ion milling step. We demonstrate methods for integrating heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each sub-array, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (Tc) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these "hybrid" arrays will be presented.

3.
Rev Sci Instrum ; 87(11): 11D503, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910640

RESUMO

The Hitomi Soft X-ray Spectrometer (SXS) was a pioneering non-dispersive imaging x-ray spectrometer with 5 eV FWHM energy resolution, consisting of an array of 36 silicon-thermistor microcalorimeters at the focus of a high-throughput soft x-ray telescope. The instrument enabled astrophysical plasma diagnostics in the 0.3-12 keV band. We introduce the SXS calibration strategy and corresponding ground calibration measurements that took place from 2012-2015, including both the characterization of the microcalorimeter array and measurements of the x-ray transmission of optical blocking filters.

4.
Opt Lett ; 24(5): 342-4, 1999 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18071500

RESUMO

The responsivity at a constant detection area of non-steady-state photoinduced electromotive force (photo-emf) detectors is improved by a factor equal to the number of contact pairs contained in asymmetric interdigitated surface contacts. The polar nature of photo-emf current generation requires contact asymmetry in which one increases the total signal by blocking the illumination between alternate contact pairs, in distinct contrast to the behavior of conventional interdigitated contacts fabricated upon isotropic photoconductors.

5.
Opt Lett ; 21(1): 18-20, 1996 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19865290

RESUMO

We have observed dark decay rates in BaTiO(3) crystals at elevated temperatures that correspond to dark decay times as long as 2200 years at room temperature. Our investigations have shown that cerium is a desirable dopant in BaTiO(3) for enhancing the dark storage time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA