Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lasers Surg Med ; 53(3): 344-358, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32525252

RESUMO

BACKGROUND AND OBJECTIVES: Photodynamic therapy (PDT) is an antitumor procedure clinically approved for the treatment of different cancer types. Despite strong efforts and promising results in this field, PDT has not yet been approved by any regulatory authority for the treatment of colorectal cancer, one of the most prevalent gastrointestinal tumors. In the search of novel therapeutic strategies, we examined the in vivo effect of PDT with a lipophilic phthalocyanine (Pc9) encapsulated into polymeric poloxamine micelles (T1107) in a murine colon carcinoma model. STUDY DESIGN/MATERIALS AND METHODS: In vivo assays were performed with BALB/c mice challenged with CT26 cells. Pc9 tumor uptake was evaluated with an in vivo imaging system. Immunofluorescence, western blot, and flow cytometry assays were carried out to characterize the activation of apoptosis and an antitumor immune response. RESULTS: Pc9-T1107 effectively delayed tumor growth and prolonged mice survival, without generating systemic or tissue-specific toxicity. The induction of an apoptotic response was characterized by a decrease in the expression levels of Bcl-XL , Bcl-2, procaspase 3, full length Bid, a significant increment in the amount of active caspase-3 and the detection of PARP-1 cleavage. Infiltration of CD8+ CD107a+ T cells and higher levels of interferon-γ and tumor necrosis factor-α were also found in PDT-treated tumors. CONCLUSIONS: Pc9-T1107 PDT treatment reduced tumor growth, inducing an apoptotic cell death and activating an immune response. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.


Assuntos
Neoplasias do Colo , Fotoquimioterapia , Animais , Apoptose , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Imunidade , Isoindóis , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organometálicos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Zinco/farmacologia , Zinco/uso terapêutico , Compostos de Zinco
2.
Sci Rep ; 10(1): 15619, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973195

RESUMO

Previously we demonstrated that multidrug resistance-associated protein 4 transporter (MRP4) mediates cAMP efflux in bovine spermatozoa and that extracellular cAMP (ecAMP) triggers events associated to capacitation. Here, we deepen the study of the role of MRP4 in bovine sperm function by using MK571, an MRP4 inhibitor. The incubation of spermatozoa with MK571 during 45 min inhibited capacitation-associated events. MRP4 was localized in post-acrosomal region and mid-piece at 15 min capacitation, while at 45 min it was mainly located in the acrosome. After 15 min, MK571 decreased total sperm motility (TM), progressive motility (PM) and several kinematic parameters. The addition of ecAMP rescued MK571 effect and ecAMP alone increased the percentage of motile sperm and kinematics parameters. Since actin cytoskeleton plays essential roles in the regulation of sperm motility, we investigated if MRP4 activity might affect actin polymerization. After 15 min capacitation, an increase in F-actin was observed, which was inhibited by MK571. This effect was reverted by the addition of ecAMP. Furthermore, ecAMP alone increased F-actin levels while no F-actin was detected with ecAMP in the presence of PKA inhibitors. Our results support the importance of cAMP efflux through MRP4 in sperm capacitation and suggest its involvement in the regulation of actin polymerization and motility.


Assuntos
Acrossomo/fisiologia , Actinas/fisiologia , AMP Cíclico/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Capacitação Espermática , Motilidade dos Espermatozoides/fisiologia , Animais , Bovinos , Masculino , Fosforilação , Transdução de Sinais
3.
Int J Biochem Cell Biol ; 114: 105575, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31362060

RESUMO

Photodynamic therapy (PDT) is a highly specific and clinically approved method for cancer treatment in which a nontoxic drug known as photosensitizer (PS) is administered to a patient. After selective tumor irradiation, an almost complete eradication of the tumor can be reached as a consequence of reactive oxygen species (ROS) generation, which not only damage tumor cells, but also lead to tumor-associated vasculature occlusion and the induction of an immune response. Despite exhaustive investigation and encouraging results, zinc(II) phthalocyanines (ZnPcs) have not been approved as PSs for clinical use yet. This review presents an overview on the physicochemical properties of ZnPcs and biological results obtained both in vitro and in more complex models, such as 3D cell cultures, chicken chorioallantoic membranes and tumor-bearing mice. Cell death pathways induced after PDT treatment with ZnPcs are discussed in each case. Finally, combined therapeutic strategies including ZnPcs and the currently available clinical trials are mentioned.


Assuntos
Indóis , Neoplasias Experimentais/tratamento farmacológico , Compostos Organometálicos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Morte Celular/efeitos dos fármacos , Galinhas , Humanos , Indóis/química , Indóis/uso terapêutico , Isoindóis , Camundongos , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Compostos Organometálicos/química , Compostos Organometálicos/uso terapêutico , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Compostos de Zinco
4.
Int J Biochem Cell Biol ; 103: 89-98, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30130653

RESUMO

We have previously reported that the phototoxic action of the lipophilic phthalocyanine Pc9 (2,9(10),16(17),23(24) tetrakis[(2-dimethylamino)ethylsulfanyl]phthalocyaninatozinc(II)) encapsulated into poloxamine micelles is related to the induction of an apoptotic response in murine colon CT26 carcinoma cells. In the present study, we explored the intracellular signals contributing to the resulting apoptotic death. We found that Pc9-T1107 arrests cell cycle progression immediately after irradiation promoting then an apoptotic response. Thus, 3 h after irradiation the percentage of hypodiploid cells increased from 5.9 ±â€¯0.6% to 23.1 ±â€¯0.1%; activation of caspases 8 and 9 was evident; the population of cells with loss of mitochondrial membrane potential increased from 1.1 ±â€¯0.4% to 44.0 ±â€¯9.3%; the full-length forms of Bid and PARP-1 were cleaved; and a 50% decrease of the expression levels of the anti-apoptotic proteins Bcl-2 and Bcl-XL was detected. We also found that the photosensitizer, mainly retained in lysosomes and endoplasmic reticulum (ER), promotes the permeabilization of lysosomal membranes and induces ER stress. Lysosomal membrane permeabilization was demonstrated by the reduction of acridine orange lysosome fluorescence, the release of Cathepsin D into the cytosol and ∼50% decrease of Hsp70, a chaperone recognized as a lysosomal stabilizer. Cathepsin D also contributed to Bid cleavage and caspase 8 activation. The oxidative damage to the ER induced an unfolded protein response characterized, 3 h after irradiation, by a 3-fold increase in cytosolic Ca2+ levels and 3-4 times higher expression of ER chaperones GRP78/BIP, calnexin, Hsp90 and Hsp110. The cell death signaling promoted by cytosolic Ca2+, calpains and lysosomal proteases was partially abolished by the Ca2+ chelator BAPTA-AM, the calpain inhibitor PD 150606 and proteases inhibitors. Furthermore, Bax down-regulation observed in Pc9-treated cells was undetectable in the presence of PD 150606, indicating that calpains contribute to Bax proteolytic damage. In summary, our results indicate that photoactivation of Pc9-T1107 led to lysosomal membrane permeabilization, induction of ER stress and activation of a caspase-dependent apoptotic cell death.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Indóis/farmacologia , Lisossomos/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Chaperona BiP do Retículo Endoplasmático , Isoindóis , Lisossomos/patologia , Camundongos , Proteínas de Neoplasias/metabolismo , Permeabilidade/efeitos dos fármacos , Fototerapia
5.
J Photochem Photobiol B ; 170: 140-151, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28432944

RESUMO

Photodynamic therapy is emerging as a hopeful method for the treatment of oncological diseases. In the search of novel therapeutic strategies for colorectal cancer, in this work we reported the photocytotoxic activity of a lipophilic zinc(II) phthalocyanine on a murine colon adenocarcinoma cell line (CT26 cells). The 2,9(10),16(17),23(24) tetrakis[(2-dimethylamino)ethylsulfanyl]phthalocyaninatozinc(II), named Pc9, was encapsulated into Tetronic® 1107 polymeric poloxamine micelles (T1107) and assayed in 2D and 3D cell cultures. We showed that the formulation Pc9-T1107 was efficient to reduce cell viability after photodynamic treatment both in 2D cultures (IC50 10±2nM) as well as in CT26 spheroids (IC50 370±11nM). Cellular uptake of Pc9-T1107 was a time- and concentration-dependent process, being the phthalocyanine formulation mainly incorporated into lysosomal vesicles and endoplasmic reticulum cisterns, but not in mitochondria. Pc9-T1107 also induced the formation of reactive oxygen species immediately after cell irradiation. We also found that the phototoxic action of Pc9-T1107 was partially reversed in the presence of antioxidants, such as TROLOX and N-acetyl-cysteine. In addition, we showed that Pc9-T1107 treatment triggered an apoptotic cell death, as suggested by the detection of pyknotic nuclei, the reduction in the expression levels of procaspase-3 and the increase in caspase-3 enzymatic activity.


Assuntos
Apoptose/efeitos dos fármacos , Portadores de Fármacos/química , Indóis/química , Indóis/toxicidade , Micelas , Compostos Organometálicos/toxicidade , Fármacos Fotossensibilizantes/toxicidade , Antioxidantes/química , Antioxidantes/metabolismo , Apoptose/efeitos da radiação , Caspase 3/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Retículo Endoplasmático/metabolismo , Humanos , Isoindóis , Luz , Lisossomos/metabolismo , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA