RESUMO
AIM: Gastrointestinal medullary carcinoma is a rare histologic subtype of adenocarcinoma. As nonampullary small bowel medullary carcinomas (SB-MCs) are poorly characterized, we aimed to analyse their clinicopathologic and immunohistochemical features and to compare them with nonmedullary small bowel adenocarcinomas (NM-SBAs). METHODS AND RESULTS: Surgically resected SBAs collected through the Small Bowel Cancer Italian Consortium were classified as SB-MCs (carcinomas with ≥50% of tumour fulfilling the typical histologic criteria of MC) or NM-SBAs. Immunohistochemistry for cytokeratin (CK)7, CK20, CDX2, programmed death-ligand 1 (PD-L1) and mismatch repair proteins was performed in both SB-MCs and NM-SBAs. SB-MCs were also tested for CK8/18, synaptophysin, SMARCB1, SMARCA2, SMARCA4, and ARID1A and for Epstein-Barr virus (EBV)-encoded RNAs by in-situ hybridization. MLH1 promoter methylation status was evaluated in MLH1-deficient cases. Eleven SB-MCs and 149 NM-SBAs were identified. One (9%) SB-MC was EBV-positive, while 10 (91%) harboured mismatch repair deficiency (dMMR). MLH1 promoter hypermethylation was found in all eight dMMR SB-MCs tested. Switch/sucrose nonfermentable deficiency was seen in two (18%) SB-MCs, both with isolated loss of ARID1A. Compared with NM-SBAs, SB-MCs exhibited an association with coeliac disease (P < 0.001), higher rates of dMMR (P < 0.001), and PD-L1 positivity by both tumour proportion score and combined positive score (P < 0.001 for both), and a lower rate of CK20 expression (P = 0.024). Survival analysis revealed a better prognosis of SB-MC patients compared to NM-SBA cases (P = 0.02). CONCLUSION: SB-MCs represent a distinct histologic subtype, with peculiar features compared to NM-SBAs, including association with coeliac disease, dMMR, PD-L1 expression, and better prognosis.
RESUMO
OTX Homeobox genes are involved in embryonic morphogenesis and in the development of olfactory epithelium in adult. Mutations occurring in the OTX genes are reported to be associated to tumorigenisis in human. No reports correlate the expression of OTX genes and neoplasms of the nasal cavity. Thus, through immunohistochemical and Real-time PCR analysis we investigated OTX1 and OTX2 expression in the more frequent types of nasal and sinonasal tumours. Variable expression of both genes were found in normal sinonasal mucosa and in tumours. Interestingly, no expression of both OTX genes were detected in sinonasal intestinal-type adenocarcinomas; only OTX1 was found in non-intestinal-type adenocarcinomas and OTX2 was selectively expressed in olfactory neuroblastomas. In conclusion, OTX1 and OTX2 genes might have a role in the pathogenesis of different types of sinonasal neoplasms.
Assuntos
Biomarcadores Tumorais/biossíntese , Estesioneuroblastoma Olfatório/metabolismo , Regulação Neoplásica da Expressão Gênica , Cavidade Nasal/metabolismo , Proteínas de Neoplasias/biossíntese , Neoplasias Nasais/metabolismo , Fatores de Transcrição Otx/biossíntese , Adulto , Estesioneuroblastoma Olfatório/patologia , Feminino , Humanos , Masculino , Cavidade Nasal/patologia , Neoplasias Nasais/patologia , Reação em Cadeia da Polimerase em Tempo Real/métodosRESUMO
Gastric cancer (GC) is a deadly disease with limited treatment options. Recent studies with PD-1 inhibition have shown promising results in GC, but key questions remain regarding which GC subclass may respond best. In other cancers, expression of the PD-1 ligand PD-L1 has been shown to identify cancers with greater likelihood of response to PD-1 blockade. We here show with immunohistochemistry that Epstein-Barr Virus (EBV)+ GCs (n = 32) have robust PD-L1 expression not seen in other GCs. In EBV+ GC, we observed PD-L1 staining in tumor cells in 50% (16/32) and immune cells in 94% (30/32) of cases. Among EBV-negative GCs, PD-L1 expression within tumors cells was observed only in cases with microsatellite instability (MSI), although 35% of EBV-/MSS GCs possessed PD-L1 expression of inflammatory cells. Moreover, distinct classes of GC showed different patterns of PD-L1+ immune cell infiltrations. In both EBV+ and MSI tumors, PD-L1+ inflammatory cells were observed to infiltrate the tumor. By contrast, such cells remained at the tumor border of EBV-/MSS GCs. Consistent with these findings, we utilized gene expression profiling of GCs from The Cancer Genome Atlas study to demonstrate that an interferon-γ driven gene signature, an additional proposed marker of sensitivity to PD-1 therapy, were enriched in EBV+ and MSI GC. These data suggest that patients with EBV+ and MSI GC may have greater likelihood of response to PD-1 blockade and that EBV and MSI status should be evaluated as variables in clinical trials of these emerging inhibitors.
Assuntos
Antígeno B7-H1/biossíntese , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/patologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/virologia , Idoso , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Infecções por Vírus Epstein-Barr/genética , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologiaRESUMO
The mammary gland, the unique organ that primarily form at puberty, is an ideal model to study the functions of homeobox (HB) genes in both development and tumorigenesis. HB genes comprise a large family of developmental regulators that have a critical role in cell growth and differentiation. In the normal mammary gland, homeobox genes are involved in ductal formation, epithelial branching, and lobulo-alveolar development by regulating epithelial proliferation and differentiation. The HB genes are controlled in a spatial and temporal manner in both stromal and epithelial cells. They are coordinately regulated by hormones and extracellular matrix, suggesting that many signaling pathways are involved in homeobox gene functions. When homeobox genes are misexpressed in animal models, different defects are displayed in mammary gland development. Aberrant expression of homeobox genes, overexpressed or downregulated, is found in primary carcinomas and in breast cancer. The Otx1 HB gene is a classic regulatory of nervous system development during embryogenesis. Postnatally Otx1 is transcribed in the anterior pituitary gland, where activates transcription of the pituitary hormones, and plays a role in hematopoiesis, enhancing pluripotent cells, and erythroid differentiation. Otx1 can still be detected in mature cells of the erythroid and megacaryocytic lineage. During cyclical development of mammary gland, the Otx1 gene is overexpressed in lactation, confirming a role of this transcription factor in cell differentiation. Recent studies report that Otx1 is overexpressed in breast cancer. Otx1 is expressed during embryogenesis, and it is expressed again during carcinogenesis, implying its possible function in differentiation of neoplastic cells.