Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11758, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783015

RESUMO

Glaucoma is a progressive neurodegenerative disease characterized by the gradual degeneration of retinal ganglion cells, leading to irreversible blindness worldwide. Therefore, timely and accurate diagnosis of glaucoma is crucial, enabling early intervention and facilitating effective disease management to mitigate further vision deterioration. The advent of optical coherence tomography (OCT) has marked a transformative era in ophthalmology, offering detailed visualization of the macula and optic nerve head (ONH) regions. In recent years, both 2D and 3D convolutional neural network (CNN) algorithms have been applied to OCT image analysis. While 2D CNNs rely on post-prediction aggregation of all B-scans within OCT volumes, 3D CNNs allow for direct glaucoma prediction from the OCT data. However, in the absence of extensively pre-trained 3D models, the comparative efficacy of 2D and 3D-CNN algorithms in detecting glaucoma from volumetric OCT images remains unclear. Therefore, this study explores the efficacy of glaucoma detection through volumetric OCT images using select state-of-the-art (SOTA) 2D-CNN models, 3D adaptations of these 2D-CNN models with specific weight transfer techniques, and a custom 5-layer 3D-CNN-Encoder algorithm. The performance across two distinct datasets is evaluated, each focusing on the macula and the ONH, to provide a comprehensive understanding of the models' capabilities in identifying glaucoma. Our findings demonstrate that the 2D-CNN algorithm consistently provided robust results compared to their 3D counterparts tested in this study for glaucoma detection, achieving AUC values of 0.960 and 0.943 for the macular and ONH OCT test images, respectively. Given the scarcity of pre-trained 3D models trained on extensive datasets, this comparative analysis underscores the overall utility of 2D and 3D-CNN algorithms in advancing glaucoma diagnostic systems in ophthalmology and highlights the potential of 2D algorithms for volumetric OCT image-based glaucoma detection.


Assuntos
Algoritmos , Glaucoma , Redes Neurais de Computação , Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Humanos , Glaucoma/diagnóstico por imagem , Glaucoma/diagnóstico , Imageamento Tridimensional/métodos , Disco Óptico/diagnóstico por imagem , Disco Óptico/patologia , Células Ganglionares da Retina/patologia
2.
Sci Rep ; 14(1): 4494, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38396048

RESUMO

Glaucoma is the leading cause of irreversible blindness worldwide. Often asymptomatic for years, this disease can progress significantly before patients become aware of the loss of visual function. Critical examination of the optic nerve through ophthalmoscopy or using fundus images is a crucial component of glaucoma detection before the onset of vision loss. The vertical cup-to-disc ratio (VCDR) is a key structural indicator for glaucoma, as thinning of the superior and inferior neuroretinal rim is a hallmark of the disease. However, manual assessment of fundus images is both time-consuming and subject to variability based on clinician expertise and interpretation. In this study, we develop a robust and accurate automated system employing deep learning (DL) techniques, specifically the YOLOv7 architecture, for the detection of optic disc and optic cup in fundus images and the subsequent calculation of VCDR. We also address the often-overlooked issue of adapting a DL model, initially trained on a specific population (e.g., European), for VCDR estimation in a different population. Our model was initially trained on ten publicly available datasets and subsequently fine-tuned on the REFUGE dataset, which comprises images collected from Chinese patients. The DL-derived VCDR displayed exceptional accuracy, achieving a Pearson correlation coefficient of 0.91 (P = 4.12 × 10-412) and a mean absolute error (MAE) of 0.0347 when compared to assessments by human experts. Our models also surpassed existing approaches on the REFUGE dataset, demonstrating higher Dice similarity coefficients and lower MAEs. Moreover, we developed an optimization approach capable of calibrating DL results for new populations. Our novel approaches for detecting optic discs and optic cups and calculating VCDR, offers clinicians a promising tool that significantly reduces manual workload in image assessment while improving both speed and accuracy. Most importantly, this automated method effectively differentiates between glaucoma and non-glaucoma cases, making it a valuable asset for glaucoma detection.


Assuntos
Glaucoma , Disco Óptico , Humanos , Glaucoma/diagnóstico por imagem , Disco Óptico/diagnóstico por imagem , Fundo de Olho , Nervo Óptico , Oftalmoscopia/métodos , Cegueira
3.
Front Genet ; 14: 1130106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124618

RESUMO

Intraocular pressure (IOP) is the only modifiable risk factor for glaucoma, the leading cause of irreversible blindness worldwide. In this review, we summarize the findings of genome-wide association studies (GWASs) of IOP published in the past 10 years and prior to December 2022. Over 190 genetic loci and candidate genes associated with IOP have been uncovered through GWASs, although most of these studies were conducted in subjects of European and Asian ancestries. We also discuss how these common variants have been used to derive polygenic risk scores for predicting IOP and glaucoma, and to infer causal relationship with other traits and conditions through Mendelian randomization. Additionally, we summarize the findings from a recent large-scale exome-wide association study (ExWAS) that identified rare variants associated with IOP in 40 novel genes, six of which are drug targets for clinical treatment or are being evaluated in clinical trials. Finally, we discuss the need for future genetic studies of IOP to include individuals from understudied populations, including Latinos and Africans, in order to fully characterize the genetic architecture of IOP.

4.
Sci Rep ; 13(1): 450, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624143

RESUMO

Alzheimer's disease (AD) is the most common late-onset neurodegenerative disorder. Identifying individuals at increased risk of developing AD is important for early intervention. Using data from the Alzheimer Disease Genetics Consortium, we constructed polygenic risk scores (PRSs) for AD and age-at-onset (AAO) of AD for the UK Biobank participants. We then built machine learning (ML) models for predicting development of AD, and explored feature importance among PRSs, conventional risk factors, and ICD-10 codes from electronic health records, a total of > 11,000 features using the UK Biobank dataset. We used eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanations (SHAP), which provided superior ML performance as well as aided ML model explanation. For participants age 40 and older, the area under the curve for AD was 0.88. For subjects of age 65 and older (late-onset AD), PRSs were the most important predictors. This is the first observation that PRSs constructed from the AD risk and AAO play more important roles than age in predicting AD. The ML model also identified important predictors from EHR, including urinary tract infection, syncope and collapse, chest pain, disorientation and hypercholesterolemia, for developing AD. Our ML model improved the accuracy of AD risk prediction by efficiently exploring numerous predictors and identified novel feature patterns.


Assuntos
Doença de Alzheimer , Humanos , Adulto , Idoso , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Registros Eletrônicos de Saúde , Fatores de Risco , Aprendizado de Máquina
5.
Nat Commun ; 13(1): 7376, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450729

RESUMO

Elevated intraocular pressure (IOP) is a major risk factor for glaucoma, the leading cause of irreversible blindness worldwide. IOP is also the only modifiable risk factor for glaucoma. Previous genome-wide association studies have established the contribution of common genetic variants to IOP. The role of rare variants for IOP was unknown. Using whole exome sequencing data from 110,260 participants in the UK Biobank (UKB), we conducted the largest exome-wide association study of IOP to date. In addition to confirming known IOP genes, we identified 40 novel rare-variant genes for IOP, such as BOD1L1, ACAD10 and HLA-B, demonstrating the power of including and aggregating rare variants in gene discovery. About half of these IOP genes are also associated with glaucoma phenotypes in UKB and the FinnGen cohort. Six of these genes, i.e. ADRB1, PTPRB, RPL26, RPL10A, EGLN2, and MTOR, are drug targets that are either established for clinical treatment or in clinical trials. Furthermore, we constructed a rare-variant polygenic risk score and showed its significant association with glaucoma in independent participants (n = 312,825). We demonstrated the value of rare variants to enhance our understanding of the biological mechanisms regulating IOP and uncovered potential therapeutic targets for glaucoma.


Assuntos
Glaucoma , Pressão Intraocular , Humanos , Pressão Intraocular/genética , Sequenciamento do Exoma , Estudo de Associação Genômica Ampla , Glaucoma/genética , Genes MHC Classe I , Prolina Dioxigenases do Fator Induzível por Hipóxia , Acil-CoA Desidrogenase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA