Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(2): e17189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375686

RESUMO

Terrestrial ecosystems affect climate by reflecting solar irradiation, evaporative cooling, and carbon sequestration. Yet very little is known about how plant traits affect climate regulation processes (CRPs) in different habitat types. Here, we used linear and random forest models to relate the community-weighted mean and variance values of 19 plant traits (summarized into eight trait axes) to the climate-adjusted proportion of reflected solar irradiation, evapotranspiration, and net primary productivity across 36,630 grid cells at the European extent, classified into 10 types of forest, shrubland, and grassland habitats. We found that these trait axes were more tightly linked to log evapotranspiration (with an average of 6.2% explained variation) and the proportion of reflected solar irradiation (6.1%) than to net primary productivity (4.9%). The highest variation in CRPs was explained in forest and temperate shrubland habitats. Yet, the strength and direction of these relationships were strongly habitat-dependent. We conclude that any spatial upscaling of the effects of plant communities on CRPs must consider the relative contribution of different habitat types.


Assuntos
Ecossistema , Pradaria , Plantas , Clima , Processos Climáticos , Biodiversidade
2.
Conserv Biol ; : e14212, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904665

RESUMO

The Natura 2000 (N2K) protected area (PA) network is a crucial tool to limit biodiversity loss in Europe. Despite covering 18% of the European Union's (EU) land area, its effectiveness at conserving biodiversity across taxa and biogeographic regions remains uncertain. Testing this effectiveness is, however, difficult because it requires considering the nonrandom location of PAs, and many possible confounding factors. We used propensity score matching and accounted for the confounding effects of biogeographic regions, terrain ruggedness, and land cover to assess the effectiveness of N2K PAs on the distribution of 1769 species of conservation priority in the EU's Birds and Habitats Directives, including mammals, birds, amphibians, reptiles, arthropods, fishes, mollusks, and vascular and nonvascular plants. We compared alpha, beta, and gamma diversity between matched selections of protected and unprotected areas across EU's biogeographic regions with generalized linear models, generalized mixed models, and nonparametric tests for paired samples, respectively, for each taxonomic group and for the entire set of species. PAs in N2K hosted significantly more priority species than unprotected land, but this difference was not consistent across biogeographic regions or taxa. Total alpha diversity and alpha diversity of amphibians, arthropods, birds, mammals, and vascular plants were significantly higher inside PAs than outside, except in the Boreal biogeographical region. Beta diversity was in general significantly higher inside N2K PAs than outside. Similarly, gamma diversity had the highest values inside PAs, with some exceptions in Boreal and Atlantic regions. The planned expansion of the N2K network, as dictated by the European Biodiversity Strategy for 2030, should therefore target areas in the southern part of the Boreal region where species diversity of amphibians, arthropods, birds, mammals, and vascular plants is high and species are currently underrepresented in N2K.


Análisis multitaxonómico de la efectividad de Natura 2000 en las regiones biogeográficas de Europa Resumen La red de áreas protegidas (AP) de Natura 2000 (N2K) es una herramienta importante para reducir la pérdida de biodiversidad en Europa. A pesar de que cubre el 18% del área terrestre de la UE, todavía es incierta la efectividad que tiene para conservar la biodiversidad en los taxones y las regiones biogeográficas. Sin embargo, es complicado analizar esta efectividad porque requiere considerar la ubicación no azarosa de las AP y la posibilidad de muchos factores confusos. Usamos el pareamiento por puntaje de propensión y consideramos los efectos confusos de las regiones biogeográficas, lo accidentado del terreno y la cobertura del suelo para analizar la efectividad de las AP de N2K en la distribución de 1,769 especies (mamíferos, aves, anfibios, reptiles, artrópodos, peces, moluscos y plantas vasculares y no vasculares) con prioridad de conservación en las Directivas de Aves y Hábitats de la UE. Comparamos la diversidad alfa, beta y gamma entre las selecciones pareadas de las áreas protegidas y no protegidas en las regiones biogeográficas de la UE con los modelos generalizados lineales, mixtos y pruebas no paramétricas de las muestras pareadas, respectivamente, para cada grupo taxonómico y para el conjunto completo de especies. Las áreas protegidas en N2K tuvieron una mayoría significativa de especies prioritarias en comparación con el suelo no protegido, pero esta diferencia no fue coherente entre los taxones y las regiones biogeográficas. La diversidad alfa total y la diversidad alfa de anfibios, artrópodos, aves, mamíferos y plantas vasculares fue significativamente mayor dentro de las AP que fuera de ellas, excepto en la región biogeográfica boreal. La diversidad beta fue significativamente más alta dentro de las AP de N2K que fuera de ellas. De forma similar, la diversidad gamma tuvo los valores más altos dentro de las AP, salvo algunas excepciones en las regiones boreal y atlántica. Por lo tanto, la expansión planeada de la red N2K, como dicta la Estrategia de la UE sobre Biodiversidad para 2030, debería enfocarse en las áreas del sur de la región boreal, donde es alta la diversidad de especies de anfibios, artrópodos, aves, mamíferos y plantas vasculares y cuyas especies están poco representadas dentro de N2K.

4.
Nat Commun ; 14(1): 712, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759605

RESUMO

Ecological theory predicts close relationships between macroclimate and functional traits. Yet, global climatic gradients correlate only weakly with the trait composition of local plant communities, suggesting that important factors have been ignored. Here, we investigate the consistency of climate-trait relationships for plant communities in European habitats. Assuming that local factors are better accounted for in more narrowly defined habitats, we assigned > 300,000 vegetation plots to hierarchically classified habitats and modelled the effects of climate on the community-weighted means of four key functional traits using generalized additive models. We found that the predictive power of climate increased from broadly to narrowly defined habitats for specific leaf area and root length, but not for plant height and seed mass. Although macroclimate generally predicted the distribution of all traits, its effects varied, with habitat-specificity increasing toward more narrowly defined habitats. We conclude that macroclimate is an important determinant of terrestrial plant communities, but future predictions of climatic effects must consider how habitats are defined.


Assuntos
Ecossistema , Plantas , Europa (Continente) , Sementes
6.
Sci Rep ; 11(1): 4438, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627718

RESUMO

We explored the influence of climatic factors on diversity patterns of multiple taxa (lichens, bryophytes, and vascular plants) along a steep elevational gradient to predict communities' dynamics under future climate change scenarios in Mediterranean regions. We analysed (1) species richness patterns in terms of heat-adapted, intermediate, and cold-adapted species; (2) pairwise beta-diversity patterns, also accounting for its two different components, species replacement and richness difference; (3) the influence of climatic variables on species functional traits. Species richness is influenced by different factors between three taxonomic groups, while beta diversity differs mainly between plants and cryptogams. Functional traits are influenced by different factors in each taxonomic group. On the basis of our observations, poikilohydric cryptogams could be more impacted by climate change than vascular plants. However, contrasting species-climate and traits-climate relationships were also found between lichens and bryophytes suggesting that each group may be sensitive to different components of climate change. Our study supports the usefulness of a multi-taxon approach coupled with a species traits analysis to better unravel the response of terrestrial communities to climate change. This would be especially relevant for lichens and bryophytes, whose response to climate change is still poorly explored.

7.
Ecol Evol ; 11(24): 18111-18124, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003661

RESUMO

Habitat richness, that is, the diversity of ecosystem types, is a complex, spatially explicit aspect of biodiversity, which is affected by bioclimatic, geographic, and anthropogenic variables. The distribution of habitat types is a key component for understanding broad-scale biodiversity and for developing conservation strategies. We used data on the distribution of European Union (EU) habitats to answer the following questions: (i) how do bioclimatic, geographic, and anthropogenic variables affect habitat richness? (ii) Which of those factors is the most important? (iii) How do interactions among these variables influence habitat richness and which combinations produce the strongest interactions? The distribution maps of 222 terrestrial habitat types as defined by the Natura 2000 network were used to calculate habitat richness for the 10 km × 10 km EU grid map. We then investigated how environmental variables affect habitat richness, using generalized linear models, generalized additive models, and boosted regression trees. The main factors associated with habitat richness were geographic variables, with negative relationships observed for both latitude and longitude, and a positive relationship for terrain ruggedness. Bioclimatic variables played a secondary role, with habitat richness increasing slightly with annual mean temperature and overall annual precipitation. We also found an interaction between anthropogenic variables, with the combination of increased landscape fragmentation and increased population density strongly decreasing habitat richness. This is the first attempt to disentangle spatial patterns of habitat richness at the continental scale, as a key tool for protecting biodiversity. The number of European habitats is related to geography more than climate and human pressure, reflecting a major component of biogeographical patterns similar to the drivers observed at the species level. The interaction between anthropogenic variables highlights the need for coordinated, continental-scale management plans for biodiversity conservation.

8.
Biodivers Data J ; 8: e53720, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684779

RESUMO

BACKGROUND: Biogeographical units are widely adopted in ecological research and nature conservation management, even though biogeographical regionalisation is still under scientific debate. The European Environment Agency provided an official map of the European Biogeographical Regions (EBRs), which contains the official boundaries used in the Habitats and Birds Directives. However, these boundaries bisect cells in the official EU 10 km × 10 km grid used for many purposes, including reporting species and habitat data, meaning that 6881 cells overlap two or more regions. Therefore, superimposing the EBRs vector map over the grid creates ambiguities in associating some cells with European Biogeographical Regions. NEW INFORMATION: To provide an operational tool to unambiguously define the boundaries of the eleven European Biogeographical Regions, we provide a specifically developed raster map of Grid-Based European Biogeographical Regions (GB-EBRs). In this new map, the borders of the EBRs are reshaped to coherently match the standard European 10 km × 10 km grid imposed for reporting tasks by Article 17 of the Habitats Directive and used for many other datasets. We assign each cell to the EBR with the largest area within the cell.

9.
Sci Total Environ ; 735: 139537, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485454

RESUMO

While changing climatic conditions may directly impact species distribution ranges, indirect effects related to altered biotic interactions may exacerbate range shifts. This situation fully applies to epiphytic lichens that are sensitive to climatic factors and strongly depend on substrate occurrence and features for their dispersal and establishment. In this work, we modelled the climatic suitability across Italy under current and future climate of the forest species Lobaria pulmonaria, the lung lichen. Comparatively, we modelled the suitability of its main tree species in Italy, as well as that of the alien tree Robinia pseudoacacia, black locust, whose spread may cause the decline of many forest lichen species. Our results support the view that climate change may cause range shifts of epiphytes by altering the spatial pattern of their climatic suitability (direct effect) and simultaneously causing range shifts of their host-tree species (indirect effect). This phenomenon seems to be emphasized by the invasion of alien trees, as in the case of black locust, that may replace native host tree species. Results indicate that a reduction of the habitat suitability of the lung lichen across Italy should be expected in the face of climate change and that this is coupled with a loss of suitable substrate. This situation seems to be determined by two main processes that act simultaneously: 1) a partial reduction of the spatial overlap between the climatic niche of the lung lichen and that of its host tree species, and 2) the invasion of native woods by black locust. The case of lung lichen and black locust in Italy highlights that epiphytes are prone to both direct and indirect effects of climate change. The invasion of alien trees may have consequences that are still poorly evaluated for epiphytes.


Assuntos
Líquens , Robinia , Mudança Climática , Ecossistema , Itália , Árvores
10.
Sci Rep ; 10(1): 2411, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051430

RESUMO

Soil erosion due to underground leakage is a major factor causing land degradation in karst regions. Rhizosphere effects (REs) on soil anti-erodibility (SAE) can alleviate this type of soil erosion by improving soil physical processes such as aggregate stability. However, the magnitudes and causes of interspecific variation in REs on SAE remain unclear. We tested the rhizosphere SAE indices of 42 key woody species distributed worldwide. Biologically active matter (BAM) and analogs of antibiotics (AOAs) that affect the SAE in rhizosphere soils were tested by gas chromatography-mass spectrometry (GC-MS). We then used principal component analysis (PCA) and redundancy analysis (RA) to establish a spectrum of interspecific variability in the REs for the first time. The spectrum shows a gradient of change among species. Eleven species exerted negative REs on the SAE, while the remaining species showed positive effects along the spectrum. The species with large positive effects were mostly deciduous, which have high contents of both BAM and total organic matter and low contents of AOAs in their rhizosphere soil; compared with the other species tested, these species also have more leaves and roots and are better adapted to barren soils. The botanical characteristics of species with negative REs on the SAE differed from those with large positive effects. The contents of BAM in the rhizosphere accounted for 16-23% of the total variation in REs on the SAE. This study quantified interspecific variation in REs and identified root exudates with negative REs.

11.
Conserv Biol ; 34(2): 368-372, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31418913

RESUMO

There is a growing need to assess and monitor forest cover and its conservation status over global scales to determine human impact on ecosystems and to develop sustainability plans. Recent approaches to measure regional and global forest status and dynamics are based on remotely sensed estimates of tree cover. We argue that tree cover should not be used to assess the area of forest ecosystems because tree cover is an undefined subset of forest cover. For example, tree cover can indicate a positive trend even in the presence of deforestation, as in the case of plantations. We believe a global map of forest naturalness that accounts for the bio-ecological integrity of forest ecosystems, for example, intact forests, old-growth forest patches, rewilding forests (exploited forest landscapes undergoing long-term natural succession), and managed forests is needed for global forest assessment.


La Necesidad de Tener un Mapa Global de la Naturalidad Forestal para un Futuro Sustentable Resumen Existe una creciente necesidad de evaluar y monitorear la cobertura forestal y su estado de conservación a escala global para determinar el impacto humano sobre los ecosistemas y así desarrollar planes de sustentabilidad. Las estrategias recientes para medir el estado regional y global de los bosques, así como sus dinámicas, están basadas en estimaciones de la cobertura de árboles detectados remotamente. Discutimos que la cobertura de árboles no debería usarse para evaluar el área de los ecosistemas boscosos porque ésta es un subconjunto indefinido de la cobertura forestal. Por ejemplo, la cobertura de árboles puede indicar una tendencia positiva incluso con la presencia de la deforestación, como sucede en el caso de las plantaciones. Creemos que se necesita un mapa global de la naturalidad de los bosques que considere la integridad bio-ecológica de los ecosistemas boscosos, por ejemplo, los bosques intactos, los fragmentos de bosques primarios, los bosques de resilvestración (paisajes de bosques explotados que están pasando por una sucesión natural a largo plazo) y los bosques manejados, para la evaluación mundial de los bosques.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Florestas , Humanos , Árvores
12.
Sci Rep ; 9(1): 18770, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31801958

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Ecol Evol ; 9(20): 11716-11723, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695881

RESUMO

AIM: To date, despite their great potential biogeographical regionalization models have been mostly developed on descriptive and empirical bases. This paper aims at applying the beta-diversity framework on a statistically representative data set to analytically test the consistency of the biogeographical regionalization of Italian forests. LOCATION: Italy. TAXON: Vascular plants. METHODS: Forest plant communities were surveyed in 804 plots made in a statistically representative sample of forest communities made by 201 sites of Italian forests across the three biogeographical regions of the country: Alpine, Continental, and Mediterranean. We conducted an ordination analysis and an analysis of beta-diversity, decomposing it into its turnover and nestedness components. RESULTS: Our results provide only partial support to the consistency of the biogeographical regionalization of Italy. While the differences in forest plant communities support the distinction between the Alpine and the other two regions, differences between Continental and Mediterranean regions had lower statistical support. Pairwise beta-diversity and its turnover component are higher between- than within-biogeographical regions. This suggests that different regional species pools contribute to assembly of local communities and that spatial distance between-regions has a stronger effect than that within-regions. MAIN CONCLUSIONS: Our findings confirm a biogeographical structure of the species pools that is captured by the biogeographical regionalization. However, nonsignificant differences between the Mediterranean and Continental biogeographical regions suggest that this biogeographical regionalization is not consistent for forest plant communities. Our results demonstrate that an analytical evaluation of species composition differences among regions using beta-diversity analysis is a promising approach for testing the consistency of biogeographical regionalization models. This approach is recommended to provide support to the biogeographical regionalization used in some environmental conservation polices adopted by EU.

14.
Sci Rep ; 9(1): 13730, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551462

RESUMO

The relationship between plant productivity and species richness is one of the most debated and important issues in ecology. Ecologists have found numerous forms of this relationship and its underlying processes. However, theories and proposed drivers have been insufficient to completely explain the observed variation in the forms of this relationship. Here, we developed and validated integration models capable of combining twenty positive or negative processes affecting the relationship. The integration models generated the classic humped, asymptotic, positive, negative and irregular forms and other intermediate forms of the relationship between plant richness and productivity. These forms were linked to one another and varied according to which was considered the dependent variable. The total strengths of the different positive and negative processes are the determinants of the forms of the relationship. Positive processes, such as resource availability and species pool effects, can offset the negative effects of disturbance and competition and change the relationship. This combination method clarifies the reasons for the diverse forms of the relationship and deepens our understanding of the interactions among processes.


Assuntos
Biodiversidade , Fenômenos Fisiológicos Vegetais , Ecologia , Ecossistema , Modelos Biológicos , Plantas
15.
Data Brief ; 24: 103942, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31080858

RESUMO

The diversity of alpine grassland species and their functional traits constitute alpine ecosystem functioning and services that support human-wellbeing. However, alpine grassland diversity is threatened by land use and climate change. Field surveys and monitoring are necessary to understand and preserve such endangered ecosystems. Here we describe data on abundances (percentage cover) of 247 alpine plant species (including mosses and lichens) inside nine 20 m by 20 m plots that were subdivided into 2 m by 2 m subplots. The nine plots are located in Gran Paradiso National Park, Italy. They cover three distinct alpine vegetation subtypes ('pure' natural grassland, sparsely vegetated 'rocky' grassland, and wetland) in each of three valleys (Bardoney, Colle de Nivolet and Levionaz) between 2200 and 2700 m a.s.l., i.e. above the treeline. The vegetation survey was conducted in 2015 at the peak of vegetation development during August. The dataset is provided as supplementary material and associated with the research article "Optimizing sampling effort and information content of biodiversity surveys: a case study of alpine grassland" [1]. See [1] for data interpretation.

16.
Sci Rep ; 8(1): 6445, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691423

RESUMO

Protected areas (PAs) constitute major tools in nature conservation. In the European Union (EU), the Birds and Habitats Directives are the most important policies for conservation strategy, legally preserving Europe's characteristic, rare, endemic and threatened biota. We used occurrence data for species listed in the directives' Annexes to assess the uniqueness of major PAs in the EU (National Parks, Biosphere Reserves); this is important for preserving the EU's focal species. We developed a novel, multifunctional approach to calculate different metrics of conservation value that represent different components of species diversity within the PAs, involving inventory diversity, deviation from the species-area relationship, species rarity and differentiation diversity. Applying it, we found that individual PAs frequently vary considerably in their scores on different components, which are often disconnected from PA size. PAs around the EU periphery, often containing few species, are key to conserving species that are rare in the EU. Because our analysis focuses on EU priority species and includes different components of diversity, it allows more appropriate estimation of conservation value inside PAs in context of the EU than recent, high-profile, global-level research. We offer tools to evaluate, and information to regulate, the representativeness, persistence and efficiency of PAs.


Assuntos
Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Animais , Biodiversidade , Aves/fisiologia , Simulação por Computador , Ecossistema , Espécies em Perigo de Extinção/tendências , Europa (Continente) , União Europeia , Parques Recreativos
17.
Front Plant Sci ; 9: 116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487605

RESUMO

Italy is recognized as one of the prominent hot spot areas for plant diversity at regional and global scale, hosting a rich range of ecosystems and habitat types. This is especially true considering aquatic habitats, which represent a major portion of the total water surfaces in the Mediterranean region. Nevertheless, only a scant attention was paid to clarify the species richness of aquatic plant and its contribution to the total diversity at the country scale, despite such plants are seriously threatened at multiple scales. This paper provided the first comprehensive inventory of aquatic plants at the whole country scale, collecting data on species' distribution, trends, and explanatory determinants of species richness. We confirmed the key contribution of Italy to the regional and global aquatic plant diversity with a total of 279 species recorded since 2005, equal to the 88.5%, 55.9% and ∼10% of the richness estimated at European/Mediterranean, Palearctic and global scale, respectively. Ten species are considered extinct in the wild [among which Aldrovanda vesiculosa L., Caldesia parnassifolia (Bassi ex L.) Parl., Helosciadium repens (Jacq.) W.J.D. Koch, and Pilularia globulifera L.], four were doubt [among which Luronium natans (L.) Raf., Utricularia intermedia Hayne, and U. ochroleuca R.W. Hartman.], and eight were erroneously reported in the past, among which Isoëtes lacustris L., Myosotis rehsteineri Wartm., and Ranunculus aquatilis L. Only 18 species - mainly helophytes (14) - were present in all the 20 Italian regions, whereas hydrophytes showed most scanty regional frequencies. Temperature, latitude, area and water resources availability are the main drivers of aquatic plant spatial arrangement and diversity. Furthermore, the number of inhabitants per km2 well described the number of "lost species" since 2000. The findings of the present survey call for an urgent elaboration of large-scale strategies to ensure the survival of aquatic plants, stressing on multiple functions played by aquatic plants in supporting national economy and human well-being. In this context, Italy can play a fundamental role guaranteeing temporary refuge for projected or expected species migrations along latitude and longitude gradients. Besides, in hyper-exploited landscapes man-made water bodies can further enhance the achievement of minimum conservation targets.

18.
Sci Rep ; 7(1): 5415, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710403

RESUMO

Although islands are model systems for investigating assembly of biological communities, long-term changes in archipelago communities are not well understood because of the lack of reliable data. By using a vast amount of floristic data we assembled a dataset of the plant species occurring on 16 islands of the Tuscan Archipelago, Italy, across two periods, 1830-1950 and 1951-2015. We collected 10,892 occurrence records for 1,831 species. We found major changes in the island plant assemblages between the two periods, with native flora significantly decreasing (-10.7%) and alien flora doubling (+132.1%) in richness. The species-area relationships demonstrated the scale-dependence of the observed changes for native and alien species. The observed floristic changes were dependent on island area, with smaller islands displaying high variability in richness and compositional changes and larger islands having more stable species assemblages. The richness of species associated with open landscapes, that had been maintained for centuries by traditional practices, markedly reduced while the number of woody species, associated with afforestation processes and invasion by alien woody plants, significantly incresed. These results demonstrate the great power of floristic studies, often available in grey literature, for understanding long-term biotic changes in insular ecosystems.


Assuntos
Biodiversidade , Espécies Introduzidas , Magnoliopsida/crescimento & desenvolvimento , Plantas/classificação , Algoritmos , Ilhas , Itália , Magnoliopsida/classificação , Modelos Biológicos , Dinâmica Populacional , Especificidade da Espécie , Fatores de Tempo
19.
Sci Total Environ ; 584-585: 282-290, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28187937

RESUMO

Anticipating species distributions in space and time is necessary for effective biodiversity conservation and for prioritising management interventions. This is especially true when considering invasive species. In such a case, anticipating their spread is important to effectively plan management actions. However, considering uncertainty in the output of species distribution models is critical for correctly interpreting results and avoiding inappropriate decision-making. In particular, when dealing with species inventories, the bias resulting from sampling effort may lead to an over- or under-estimation of the local density of occurrences of a species. In this paper we propose an innovative method to i) map sampling effort bias using cartogram models and ii) explicitly consider such uncertainty in the modeling procedure under a Bayesian framework, which allows the integration of multilevel input data with prior information to improve the anticipation species distributions.

20.
Ambio ; 45(4): 468-79, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26701326

RESUMO

Sacred natural sites (SNS) are instances of biocultural landscapes protected for spiritual motives. These sites frequently host important biological values in areas of Asia and Africa, where traditional resource management is still upheld by local communities. In contrast, the biodiversity value of SNS has hardly been quantitatively tested in Western contexts, where customs and traditions have relatively lost importance due to modernization and secularization. To assess whether SNS in Western contexts retain value for biodiversity, we studied plant species composition at 30 SNS in Central Italy and compared them with a paired set of similar but not sacred reference sites. We demonstrate that SNS are important for conserving stands of large trees and habitat heterogeneity across different land-cover types. Further, SNS harbor higher plant species richness and a more valuable plant species pool, and significantly contribute to diversity at the landscape scale. We suggest that these patterns are related not only to pre-existent features, but also to traditional management. Conservation of SNS should take into account these specificities, and their cultural as well as biological values, by supporting the continuation of traditional management practices.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Cultura , Dispersão Vegetal , Árvores/fisiologia , Itália , Secularismo , Mudança Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA