Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(13)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37443827

RESUMO

BACKGROUND: Three-dimensional cell culture systems hold great promise for bridging the gap between in vitro cell-based model systems and small animal models to study tissue biology and disease. Among 3D cell culture systems, stem-cell-derived spheroids have attracted significant interest as a strategy to better mimic in vivo conditions. Cardiac stem cell/progenitor (CSC)-derived spheroids (CSs) provide a relevant platform for cardiac regeneration. METHODS: We compared three different cell culture scaffold-free systems, (i) ultra-low attachment plates, (ii) hanging drops (both requiring a 2D/3D switch), and (iii) agarose micro-molds (entirely 3D), for CSC-derived CS formation and their cardiomyocyte commitment in vitro. RESULTS: The switch from a 2D to a 3D culture microenvironment per se guides cell plasticity and myogenic differentiation within CS and is necessary for robust cardiomyocyte differentiation. On the contrary, 2D monolayer CSC cultures show a significant reduced cardiomyocyte differentiation potential compared to 3D CS culture. Forced aggregation into spheroids using hanging drop improves CS myogenic differentiation when compared to ultra-low attachment plates. Performing CS formation and myogenic differentiation exclusively in 3D culture using agarose micro-molds maximizes the cardiomyocyte yield. CONCLUSIONS: A 3D culture system instructs CS myogenic differentiation, thus representing a valid model that can be used to study adult cardiac regenerative biology.


Assuntos
Células-Tronco Hematopoéticas , Miócitos Cardíacos , Animais , Sefarose , Diferenciação Celular
2.
J Cardiovasc Dev Dis ; 10(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37367390

RESUMO

Appropriate dilated cardiomyopathy (DCM) animal models are highly desirable considering the pathophysiological and clinical heterogeneity of DCM. Genetically modified mice are the most widely and intensively utilized research animals for DCM. However, to translate discoveries from basic science into new and personalized medical applications, research in non-genetically based DCM models remains a key issue. Here, we characterized a mouse model of non-ischemic DCM induced by a stepwise pharmacologic regime of Isoproterenol (ISO) high dose bolus followed by a low dose systemic injection of the chemotherapy agent, 5-Fluorouracil (5-FU). C57BL/6J mice were injected with ISO and, 3 days after, were randomly assigned to saline or 5-FU. Echocardiography and a strain analysis show that ISO + 5FU in mice induces progressive left ventricular (LV) dilation and reduced systolic function, along with diastolic dysfunction and a persistent global cardiac contractility depression through 56 days. While mice treated with ISO alone recover anatomically and functionally, ISO + 5-FU causes persistent cardiomyocyte death, ensuing in cardiomyocyte hypertrophy through 56 days. ISO + 5-FU-dependent damage was accompanied by significant myocardial disarray and fibrosis along with exaggerated oxidative stress, tissue inflammation and premature cell senescence accumulation. In conclusions, a combination of ISO + 5FU produces anatomical, histological and functional cardiac alterations typical of DCM, representing a widely available, affordable, and reproducible mouse model of this cardiomyopathy.

3.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674648

RESUMO

The main cause of morbidity and mortality in diabetes mellitus (DM) is cardiovascular complications. Diabetic cardiomyopathy (DCM) remains incompletely understood. Animal models have been crucial in exploring DCM pathophysiology while identifying potential therapeutic targets. Streptozotocin (STZ) has been widely used to produce experimental models of both type 1 and type 2 DM (T1DM and T2DM). Here, we compared these two models for their effects on cardiac structure, function and transcriptome. Different doses of STZ and diet chows were used to generate T1DM and T2DM in C57BL/6J mice. Normal euglycemic and nonobese sex- and age-matched mice served as controls (CTRL). Immunohistochemistry, RT-PCR and RNA-seq were employed to compare hearts from the three animal groups. STZ-induced T1DM and T2DM affected left ventricular function and myocardial performance differently. T1DM displayed exaggerated apoptotic cardiomyocyte (CM) death and reactive hypertrophy and fibrosis, along with increased cardiac oxidative stress, CM DNA damage and senescence, when compared to T2DM in mice. T1DM and T2DM affected the whole cardiac transcriptome differently. In conclusion, the STZ-induced T1DM and T2DM mouse models showed significant differences in cardiac remodeling, function and the whole transcriptome. These differences could be of key relevance when choosing an animal model to study specific features of DCM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Camundongos , Animais , Cardiomiopatias Diabéticas/genética , Estreptozocina/efeitos adversos , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/induzido quimicamente , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
4.
Mech Ageing Dev ; 208: 111740, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150603

RESUMO

Cardiovascular diseases (CVD) are predominantly an aging disease. Important sex-specific differences exist and the mechanism(s) by which this sex-by-age interaction influences CVD development and progression remains elusive. Accordingly, it is still unknown whether cell senescence, a main feature of cardiac male aging, is a significant feature also of the female aged mouse heart and whether senolytics, senescence-clearing compounds, promote myocardial repair and regeneration after myocardial infarction (MI) in aged female mice. To this aim, the combination of two senolytics, dasatinib and quercetin (D+Q) or just their vehicle was administered to 22-24 months old C57BL/6 female mice after MI. D+Q improved global left ventricle function and myocardial performance after MI whereby female cardiac aging is characterized by accumulation of cardiac senescent cells that are further increased by MI. Despite their terminal differentiation nature, also cardiomyocytes acquire a senescent phenotype with age in females. D+Q removed senescent cardiac non-myocyte and myocyte cells ameliorating cardiac remodeling and regeneration. Senolytics removed aged dysfunctional cardiac stem/progenitor cells (CSCs), relieving healthy CSCs with normal proliferative and cardiomyogenic differentiation potential. In conclusions, cardiac senescent cells accumulate in the aged female hearts. Removing senescent cells is a key therapeutic target for efficient repair of the aged female heart.


Assuntos
Infarto do Miocárdio , Remodelação Ventricular , Camundongos , Masculino , Feminino , Animais , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Miócitos Cardíacos , Senescência Celular , Dasatinibe/farmacologia , Quercetina/farmacologia
5.
EClinicalMedicine ; 50: 101530, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35799845

RESUMO

Heart failure secondary to cardiomyocyte loss and/or dysfunction is the number one killer worldwide. The field of myocardial regeneration with its far-reaching primary goal of cardiac remuscularization and its hard-to-accomplish translation from bench to bedside, has been filled with ups and downs, steps forward and steps backward, controversies galore and, unfortunately, scientific scandals. Despite the present morass in which cardiac remuscularization is stuck in, the search for clinically effective regenerative approaches remains keenly active. Starting with a concise overview of the still highly debated regenerative capacity of the adult mammalian heart, we focus on the main interventions, that have reached or are close to clinical use, critically discussing key findings, successes, and failures. Finally, some promising and innovative approaches for myocardial repair/regeneration still at the pre-clinical stage are discussed to offer a holistic view on the future of myocardial repair/regeneration for the prevention/management of heart failure in the clinical scenario. Funding: This research was funded by Grants from the Ministry of University and Research PRIN2015 2015ZTT5KB_004; PRIN2017NKB2N4_005; PON-AIM - 1829805-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA