Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 150: 105631, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648873

RESUMO

Advanced therapy medicinal products (ATMPs) are among the most complex pharmaceuticals with high human specificity. Species differences severely limit the clinical relevance of in vivo data. We conducted interviews with stakeholders involved in ATMP development about their perspective on the use of in vivo studies, the perceived hurdles and associated potential solutions regarding non-clinical development of ATMPs. In total, 17 stakeholders from 9 different countries were interviewed. A workshop was held with key stakeholders to further discuss major topics identified from the interviews. Conducting in vivo studies remains the status quo for ATMPs development. The hurdles identified included determining the amount of information required before clinical entry and effective use of limited human samples to understand a treatment or for clinical monitoring. A number of key points defined the need for future in vivo studies as well as improved application and implementation of New Approach Methodology (NAM)-based approach for products within a well-known modality or technology platform. These included data transparency, understanding of the added value of in vivo studies, and continuous advancement, evaluation, and qualification of NAMs. Based on the outcome of the discussions, a roadmap with practical steps towards a human-centric safety assessment of ATMPs was established.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Humanos , Animais , Medição de Risco , Avaliação Pré-Clínica de Medicamentos/métodos
2.
Regul Toxicol Pharmacol ; 138: 105329, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592682

RESUMO

To support registration of monoclonal antibodies (mAbs) for chronic indications, 6-month toxicity studies have historically been conducted. Experience with mAb development has shown a relatively benign and well-understood safety profile for this class, with most toxicity findings anticipated based on pharmacology. We evaluated whether a 6-month toxicity study is necessary to assess the long-term safety of mAbs. Data on First-in-Human (FIH)-enabling and chronic toxicity studies were shared for 142 mAbs submitted by 11 companies. Opportunities to further optimize study designs to reduce animal usage were identified. For 71% of mAbs, no toxicities or no new toxicities were noted in chronic studies compared to FIH-enabling study findings. New toxicities of potential concern for human safety or that changed trial design were identified in 13.5% of cases, with 7% being considered critical and 2% leading to program termination. An iterative, weight-of-evidence model which considers factors that influence the overall risk for a mAb to cause toxicity was developed. This model enables an evidence-based justification, suggesting when 3-month toxicity studies are likely sufficient to support late-stage clinical development and registration for some mAbs.


Assuntos
Anticorpos Monoclonais , Projetos de Pesquisa , Animais , Humanos , Anticorpos Monoclonais/toxicidade
3.
Regul Toxicol Pharmacol ; 138: 105339, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36649820

RESUMO

Assessment of reversibility from nonclinical toxicity findings in animals with potential adverse clinical impact is required during pharmaceutical development, but there is flexibility around how and when this is performed and if recovery animals are necessary. For monoclonal antibodies (mAbs) and in accordance with ICH S6(R1) if inclusion of recovery animals is warranted, this need only occur in one study. Data on study designs for first-in-human (FIH)-enabling and later-development toxicity studies were shared from a recent collaboration between the NC3Rs, EPAA, Netherlands Medicines Evaluation Board (MEB) and 14 pharmaceutical companies. This enabled a review of practices on recovery animal use during mAb development and identification of opportunities to reduce research animal use. Recovery animals were included in 68% of FIH-enabling and 69% of later-development studies, often in multiple studies in the same program. Recovery groups were commonly in control plus one test article-dosed group or in all dose groups (45% of studies, each design). Based on the shared data review and conclusions, limiting inclusion of recovery to a single nonclinical toxicology study and species, study design optimisation and use of existing knowledge instead of additional recovery groups provide opportunities to further reduce animal use within mAb development programs.


Assuntos
Anticorpos Monoclonais , Projetos de Pesquisa , Animais , Humanos , Anticorpos Monoclonais/efeitos adversos , Avaliação Pré-Clínica de Medicamentos , Desenvolvimento de Medicamentos , Grupos Controle
4.
Vet Sci ; 6(4)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574998

RESUMO

Wilson's disease (WD), an autosomal recessive disorder, results in copper accumulation in the liver as a consequence of mutations in the gene ATPase copper transporting beta (ATP7B). The disease is characterized by chronic hepatitis, eventually resulting in liver cirrhosis. Recent studies have shown that dysregulation of nuclear receptors (NR) by high hepatic copper levels is an important event in the pathogenesis of liver disease in WD. Intracellular trafficking of ATP7B is mediated by COMMD1 and, in Bedlington terriers, a mutation in the COMMD1 gene results in high hepatic copper levels. Here, we demonstrate a reduced Farnesoid X nuclear receptor (FXR)-activity in liver biopsies of COMMD1-deficient dogs with copper toxicosis, a unique large animal model of WD. FXR-induced target genes, small heterodimer partner (SHP), and apolipoprotein E (ApoE) were down-regulated in liver samples from COMMD1-deficient dogs with hepatic copper accumulation. In contrast, the relative mRNA levels of the two CYP-enzymes (reduced by FXR activity) was similar in both groups. These data are in line with the previously observed reduced FXR activity in livers of ATP7B-/- mice and WD patients. Therefore, these data further corroborate on the importance of the COMMD1-deficient dogs as a large animal model for WD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA