Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 899: 165654, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478955

RESUMO

Phytoextraction is a low-cost and eco-friendly method for removing pollutants, such as arsenic (As), from contaminated soil. One of the most studied As hyperaccumulators for soil remediation include Pteris vittata. Although phytoextraction using plant-assisted microbes has been considered a promising soil remediation method, microbial harnessing has not been achieved due to the complex and difficult to understand interactions between microbes and plants. This problem can possibly be addressed with a multi-omics approach using a Bayesian network. However, limited studies have used Bayesian networks to analyze plant-microbe interactions. Therefore, to understand this complex interaction and to facilitate efficient As phytoextraction using microbial inoculants, we conducted field cultivation experiments at two sites with different total As contents (62 and 8.9 mg/kg). Metabolome and microbiome data were obtained from rhizosphere soil samples using nuclear magnetic resonance and high-throughput sequencing, respectively, and a Bayesian network was applied to the obtained multi-omics data. In a highly As-contaminated site, inoculation with Pseudomonas sp. strain m307, which is an arsenite-oxidizing microbe having multiple copies of the arsenite oxidase gene, increased As concentration in the shoots of P. vittata to 157.5 mg/kg under this treatment; this was 1.5-fold higher than that of the other treatments. Bayesian network demonstrated that strain m307 contributed to As accumulation in P. vittata. Furthermore, the network showed that microbes belonging to the MND1 order positively contributed to As accumulation in P. vittata. Based on the ecological characteristics of MND1, it was suggested that the rhizosphere of P. vittata inoculated with strain m307 was under low-nitrogen conditions. Strain m307 may have induced low-nitrogen conditions via arsenite oxidation accompanied by nitrate reduction, potentially resulting in microbial iron reduction or the prevention of microbial iron oxidation. These conditions may have enhanced the bioavailability of arsenate, leading to increased As accumulation in P. vittata.


Assuntos
Arsênio , Arsenitos , Pteris , Poluentes do Solo , Arsênio/análise , Teorema de Bayes , Poluentes do Solo/análise , Biodegradação Ambiental , Ferro , Solo
2.
Chemosphere ; 319: 137988, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36724852

RESUMO

Carbon tetrachloride (CT) is a recalcitrant and high priority pollutant known for its toxicity, environmental prevalence, and inhibitory activities. Although much is known about anaerobic CT biodegradation, microbial degradation of CT under aerobic conditions has not yet been reported. This study reports for the first time the enrichment of a stable aerobic CT-degrading bacterial consortium, from a CT-contaminated groundwater sample, capable of co-metabolically degrading 30 µM of CT within a week. A Pseudomonas strain (designated as Stari2) that is the predominant bacterium in this consortium was isolated, and further characterization showed that this bacterium can tolerate and co-metabolically degrade up to 5 mM of CT under aerobic conditions in the presence of different carbon/energy sources. The CT biodegradation profiles of strain Stari2 and the consortium were found to be identical, while no significant positive correlation between strain Stari2 and other bacteria was observed in the consortium during the period of higher CT biodegradation. These results confirmed that the isolated Pseudomonas strain Stari2 is the key player in the consortium catalyzing the biodegradation of CT. No chloroform (CF) or other chlorinated compound was detected during the cometabolism of CT. The whole genome sequencing of strain Stari2 showed that it is a novel Pseudomonas species. The findings demonstrated that biodegradation of CT under aerobic conditions is feasible, and the isolated CT-degrader Pseudomonas sp. strain Stari2 has a great potential for in-situ bioremediation of CT-contaminated environments.


Assuntos
Poluentes Ambientais , Pseudomonas , Pseudomonas/genética , Tetracloreto de Carbono/metabolismo , Consórcios Microbianos , Bactérias/metabolismo , Poluentes Ambientais/metabolismo , Biodegradação Ambiental
3.
Plants (Basel) ; 12(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36840224

RESUMO

Cadmium (Cd), which is present in zinc (Zn) ore, is a toxic metal and causes contamination globally. Phytoremediation is a promising technology for the remediation of sites with low and moderate contamination. Temperature is an important factor in phytoremediation because it has an impact on both plant biomass and the accumulation of heavy metals. However, little is known about the influence of temperature on heavy metal accumulation by the Cd and Zn hyperaccumulator Arabidopsis halleri ssp. gemmifera. The effect of temperature on the distribution of Cd and Zn in A. halleri ssp. gemmifera and the mechanism of metal removal from solution were investigated in this study. Our results showed that the temperature dependence of the distribution of Cd and Zn in the plant was different, which may suggest that the mechanisms of xylem loading were different between Cd and Zn. Although Cd and Zn have partially similar transport pathways, the removal kinetics based on the first-order reaction rate constant revealed that the temperature which maximized rate of absorption was different between Cd and Zn. This study suggests a potential for efficient Cd phytoextraction using A. halleri ssp gemmifera in Cd and Zn co-existing environments.

4.
Chemosphere ; 308(Pt 3): 136440, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116621

RESUMO

Microbial consortia-mediated biodegradation of 1,4-dioxane (1,4-D), an emerging water contaminant, is always a superior choice over axenic cultures. Thus, better understanding of the functions of coexisting microbes and their interspecies interactions within the consortia is crucial for predicting biodegradation efficiency and designing efficient 1,4-D-degrading microbial consortia. This study evaluated how microbial community compositions and interspecies interactions govern the microbial consortia-mediated 1,4-D biodegradation by investigating the biodegradability and microbial community dynamics of both enriched (N112) and synthetic (SCDs and SCDNs) microbial consortia in the absence or presence of additional organic compound (AOC). In the absence of AOC, N112 exhibited 100% 1,4-D biodegradation efficiency at a rate of 12.5 mg/L/d, whereas the co-occurrence of AOC resulted in substrate-dependent biodegradation inhibition and thereby reduced the biodegradation efficiency and activity (2.0-10.0 mg/L/d). The coexistence and negative influence of certain low-abundant non-degraders on both 1,4-D-degraders and key non-degraders in N112 was identified as the prime cause behind such biodegradation inhibition. Comparing with N112, SCDN-1 composed of 1,4-D-degraders and key non-degraders significantly improved the 1,4-D biodegradation efficiency in the presence of AOC, confirming the absence of negative influence of low-abundant non-degraders and cooperative interactions between 1,4-D-degraders and key non-degraders in SCDN-1. On the contrary, both two-species and three-species SCDs comprised of only 1,4-D-degraders resulted in lower 1,4-D biodegradation efficiency as compared to SCDN-1 under all treatment conditions, while max. 91% 1,4-D biodegradation occurred by SCDs in the absence of AOC. These results were attributed to the negative interaction among 1,4-D-degraders and the absence of complementary roles of key non-degraders in SCDs. The findings improve our understanding of how interspecies interactions can regulate the intrinsic abilities and functions of coexisting microbes during biodegradation in complex environments and provide valuable guidelines for designing highly efficient and robust microbial consortia for practical bioremediation of 1,4-D like emerging organic contaminants.


Assuntos
Biodegradação Ambiental , Poluentes Químicos da Água , Dioxanos , Consórcios Microbianos , Compostos Orgânicos
5.
J Hazard Mater ; 434: 128870, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452977

RESUMO

Phytoextraction is a cost-effective and eco-friendly technology to remove arsenic (As) from contaminated soil using plants and associated microorganisms. Pteris vittata is the most studied As hyperaccumulator, which effectively takes up inorganic arsenate via roots. Arsenic solubilization and speciation occur prior to plant absorption in the rhizosphere, which play a key role in As phytoextraction by P. vittata. This study investigated the metabolomic correlation of P. vittata and associated rhizospheric microorganisms during As phytoextraction. Three-month pot cultivation of P. vittata in As polluted soil was conducted. In rhizosphere, an increase of water-soluble As concentration and a decrease of pH was observed in the second month, suggesting acidic metabolites as a possible cause of As solubilization. A correlation network was built to elucidate the interactions among metabolites, bacteria and fungi in the rhizosphere of P. vittata. Our results demonstrate that the plant is the major driving force of rhizospheric microbiota generation, and both microbial community and metabolites in rhizosphere of P. vittata correlate to increased bioavailable As. Multi-omics analysis revealed that pterosins enrich microbes that potentially promote As phytoextraction. This study extends the current view of rhizospheric plant-microbes synergistic effects of hyperaccumulators on phytoextraction, which provides clues for developing efficient As phytoremediation approaches.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Arsênio/metabolismo , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Pteris/metabolismo , Solo/química , Poluentes do Solo/metabolismo
6.
Sci Total Environ ; 831: 154830, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35346712

RESUMO

In this study, the phytoremediation potential of tropical and subtropical arsenic (As) hyperaccumulating fern Pteris vittata in an As contaminated farmland field near an abandoned goldmine was investigated. The tested field is located in a subarctic area of northeast Japan. This study was aimed at decreasing the risk of As in the soil (water-soluble As) with nurturing the soil and respecting the plant life cycle for the sustainable phytoremediation for 8 years. The field was tilled and planted with new seedlings of the fern every spring and the grown fern was harvested every autumn. The biomass and As concentration in fronds, rhizomes and roots of the fern were analyzed separately after harvesting each year. The biomass of the fronds of P. vittata was significantly affected by the yearly change of the weather condition, but As concentration in fronds was kept at 100-150 mg/kg dry weight. The accumulated As in P. vittata was higher than that of As-hyperaccumulator fern Pteris cretica, the native fern in the field trial area. Harvested biomass of P. vittata per plant was also higher than that of P. cretica. More than 43.5 g As/154 m2 (convertible to 2.82 kg of As per hectare) was removed from the farmland field by P. vittata phytoremediation at the end of the 8-year experiment. Because of the short-term plant growth period and soil tilling process, total As in soil did not show significant depletion. However, the water-soluble As in the surface and deeper soil, which is phytoavailable and easily taken in cultivated plants, decreased to 10 µg/L (Japan Environmental Quality Standard for water-soluble As in soil) by the 8-year phytoremediation using P. vittata. These research data elucidate that the tropical and subtropical As hyperaccumulating fern, P. vittata, is applicable for As phytoremediation in the subarctic climate area.


Assuntos
Arsênio , Gleiquênias , Pteris , Poluentes do Solo , Arsênio/análise , Biodegradação Ambiental , Japão , Solo , Poluentes do Solo/análise , Água
7.
Artigo em Inglês | MEDLINE | ID: mdl-35162818

RESUMO

Arsenic (As) is a toxic semi-metallic element that is ubiquitous in the environment and poses serious human health risks. Phytoextraction by Pteris vittata is considered a low-cost and environmentally friendly approach to treat As-contaminated soil. P. vittata mainly absorbs arsenate thus the bioavailability of As to P. vittata depends on the chemical form of As. Microbial redox of As contributes to the biogeochemical cycling of As, and rhizobacterium-assisted phytoextraction by P. vittata was proposed. In this study, this microbe-assisted phytoextraction was applied to two fields, and the effectiveness of phytoextraction was evaluated. The results revealed that P. vittata was able to grow in temperate and subarctic climate zones. The biomass was influenced by the weather, and the As concentration in plants was dependent on the As content in the soil. The ratio of arsenite oxidase genes (aioA-like genes) to 16S rRNA genes was employed to evaluate the effect of As phytoextraction, and the results exhibited that the ratio was related to the As concentration in P. vittata. Our results showed that arsenite oxidation in the rhizosphere might not be achieved by single-strain inoculation, while this study provided empirical evidence that the rhizospheric aioA-like genes could be an indicator for evaluating the effectiveness of As phytoextraction.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Arsênio/análise , Biodegradação Ambiental , Oxirredutases/genética , Pteris/enzimologia , Pteris/genética , RNA Ribossômico 16S , Poluentes do Solo/análise
8.
Chemosphere ; 288(Pt 3): 132654, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34718018

RESUMO

The increasing contamination of the environment with microplastic requires efficient methods for the separation and detection of these plastic particles. In this work, we present a protocol that uses Fenton oxidation to remove biological material, centrifugation to separate microplastics from soil, and Nile Red staining, fluorescence microscopy, and image processing to detect and quantify of microplastic. The main component of this work was the separation process using centrifugation. All the main polymers used in this work, polyethylene, polypropylene, polystyrene, poly (vinyl chloride), and poly (ethylene terephthalate), were efficiently recovered at more than 94 wt% from heat-altered soil using CaCl2 solution with a density of 1.4 g ml-1. The hydrophilicity of the polymer had a greater effect on the recovery than density. The protocol was then tested on agricultural soil sampled near a contaminated site. The number of microplastic particles was quantified, and the weight of microplastic in the soil was estimated. The highest contamination was observed near the hotspot at a distance of 1 m with 75✕103 particles kg-1, corresponding to a weight between 20 and 6 mg kg-1. The number of particles decreased logarithmically to 30✕103 particles kg-1 or 5 to 2 mg kg-1.


Assuntos
Microplásticos , Poluentes Químicos da Água , Centrifugação , Monitoramento Ambiental , Plásticos , Solo , Poluentes Químicos da Água/análise
9.
Artigo em Inglês | MEDLINE | ID: mdl-34445930

RESUMO

Arsenic (As) hyperaccumulator Pteris ferns are renowned for their capacity to accumulate As and have been used to remediate As-contaminated environmental. However, there is less information on how they perform under low temperature though it is important for practical phytoremediation. The purpose of this study was to identify the effect of temperature on As accumulation by three As hyperaccumulators, Pteris multifida, Pteris cretica and Pteris vittata. Ferns were cultured with 5 mg/L As addition under 25 °C to 5 °C for 15 days. The results showed that dropping of temperatures reduced As accumulation by P. vittata moderately but not P. multifida and P. cretica until 10 °C. At 5 °C, all ferns discontinued As accumulation, and the morphology showed necrosis in P. vittata, wherein P. multifida and P. cretica kept healthy. The As distribution showed that As was mainly accumulated in fronds, while P. multifida stored partial As in its root. Both translocation factor and As efflux showed that temperate zone ferns manage As more strictly as compared to P. vittata. Our findings demonstrated that temperature should be considered when applying Pteris ferns for As phytoremediation, and P. multifida could be the most suitable fern for treating As-contaminated water in temperate zone area.


Assuntos
Arsênio , Gleiquênias , Pteris , Poluentes do Solo , Arsênio/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Temperatura
10.
Sci Rep ; 11(1): 12149, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34234174

RESUMO

Pteris vittata is an arsenic (As) hyperaccumulator plant that accumulates a large amount of As into fronds and rhizomes (around 16,000 mg/kg in both after 16 weeks hydroponic cultivation with 30 mg/L arsenate). However, the sequence of long-distance transport of As in this hyperaccumulator plant is unclear. In this study, we used a positron-emitting tracer imaging system (PETIS) for the first time to obtain noninvasive serial images of As behavior in living plants with positron-emitting 74As-labeled tracer. We found that As kept accumulating in rhizomes as in fronds of P. vittata, whereas As was retained in roots of a non-accumulator plant Arabidopsis thaliana. Autoradiograph results of As distribution in P. vittata showed that with low As exposure, As was predominantly accumulated in young fronds and the midrib and rachis of mature fronds. Under high As exposure, As accumulation shifted from young fronds to mature fronds, especially in the margin of pinna, which resulted in necrotic symptoms, turning the marginal color to gray and then brown. Our results indicated that the function of rhizomes in P. vittata was As accumulation and the regulation of As translocation to the mature fronds to protect the young fronds under high As exposure.


Assuntos
Arsênio/metabolismo , Flores/metabolismo , Raízes de Plantas/metabolismo , Pteris/metabolismo , Poluentes do Solo/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Autorradiografia , Biodegradação Ambiental , Transporte Biológico , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Hidroponia/métodos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/ultraestrutura , Tomografia por Emissão de Pósitrons , Pteris/crescimento & desenvolvimento , Pteris/ultraestrutura
11.
Microorganisms ; 9(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919159

RESUMO

Biodegradation is found to be a promising, cost-effective and eco-friendly option for the treatment of industrial wastewater contaminated by 1,4-dioxane (1,4-D), a highly stable synthetic chemical and probable human carcinogen. This study aimed to isolate, identify, and characterize metabolic 1,4-D-degrading bacteria from a stable 1,4-D-degrading microbial consortium. Three bacterial strains (designated as strains TS28, TS32, and TS43) capable of degrading 1,4-D as a sole carbon and energy source were isolated and identified as Gram-positive Pseudonocardia sp. (TS28) and Gram-negative Dokdonella sp. (TS32) and Afipia sp. (TS43). This study, for the first time, confirmed that the genus Dokdonella is involved in the biodegradation of 1,4-D. The results reveal that all of the isolated strains possess inducible 1,4-D-degrading enzymes and also confirm the presence of a gene encoding tetrahydrofuran/dioxane monooxygenase (thmA/dxmA) belonging to group 5 soluble di-iron monooxygenases (SDIMOs) in both genomic and plasmid DNA of each of the strains, which is possibly responsible for the initial oxidation of 1,4-D. Moreover, the isolated strains showed a broad substrate range and are capable of degrading 1,4-D in the presence of additional substrates, including easy-to-degrade compounds, 1,4-D biodegradation intermediates, structural analogs, and co-contaminants of 1,4-D. This indicates the potential of the isolated strains, especially strain TS32, in removing 1,4-D from contaminated industrial wastewater containing additional organic load. Additionally, the results will help to improve our understanding of how multiple 1,4-D-degraders stably co-exist and interact in the consortium, relying on a single carbon source (1,4-D) in order to develop an efficient biological 1,4-D treatment system.

12.
Sci Total Environ ; 740: 140137, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927575

RESUMO

Phytoremediation is a promising inexpensive method of detoxifying arsenic (As) contaminated soils using plants and associated soil microorganisms. The potential of Pteris vittata to hyperaccumulate As contamination has been investigated widely. Since As(V) is efficiently taken up by P. vittata than As(III), As speciation by associated rhizobacteria could offer enormous possibility to enhance As phytoremediation. Specifically, increased rhizobacteria mediated As(III) to As(V) conversion appeared to be a crucial step in As mobilization and translocation. In this study, Pseudomonasvancouverensis strain m318 with the potential to improve As phytoremediation was inoculated to P. vittata in a field trial for three years to evaluate its long-term efficacy and stability for enhancing As phytoextraction. The biomass, As concentration, and As accumulation of ferns showed to be increased by inoculation treatment. Although this trend occasionally declined which may be accounted to lower As concentration in soil and amount of precipitation during experiments, the potential of inoculation was observed in increased enrichment coefficients. Further, the arsenite oxidase (aioA-like) genes in the rhizosphere were detected to evaluate the influence of inoculation on As phytoremediation. The findings of this study suggested the potential application of rhizosphere regulation to improve phytoremediation technologies for As contaminated soils. However, the conditions which set the efficacy of this method could be further optimized.


Assuntos
Arsênio/análise , Pteris , Poluentes do Solo/análise , Biodegradação Ambiental , Rizosfera
13.
J Hazard Mater ; 387: 121695, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31780291

RESUMO

Rhizodegradation of polycyclic aromatic hydrocarbons (PAHs) is a product of complex interactions between plant and bacteria. In this study, hydroponic culture of sudangrass was established in order to investigate the effects of the plant on PAHs degradation and vice versa through changes in rhizosphere bacterial community. Results showed a plant-induced variability in PAHs degradation dependent on a characteristic shift in bacterial community, with pH and plant age as driving factors. Moreover, bacterial communities with high diversity seemed to abate the phytotoxic effects of PAHs degradation as observed in the plant's gross health. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and next-generation sequencing revealed that regardless of plant age and culture conditions, the increase or decrease of Sphingobium sp. could dictate the PAHs degradation potential of the bacterial consortium. Overall, this study utilized hydroponic culture of sudangrass to show that plant even of same species can suppress, support, or enhance PAHs degradation of bacteria depending on specific factors.


Assuntos
Bactérias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Sorghum/crescimento & desenvolvimento , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Hidroponia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Sorghum/efeitos dos fármacos , Sorghum/microbiologia
14.
Sci Total Environ ; 712: 134504, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31831229

RESUMO

Pteris vittata and Pteris multifida are widely studied As hyperaccumulators that absorb As mainly via roots. Hence, rhizobacteria exhibit promising potential in phytoextraction owing to their immense microbial diversity and interactions with plants. Pseudomonas vancouverensis strain m318 that contains aioA-like genes was screened from P. multifida's rhizosphere through the high As resistance (minimum inhibitory concentrations (MICs) against As(III): 16 mM; MICs against As(V): 320 mM), rapid As oxidation (98% oxidation by bacterial cultures (OD600nm = 1) from 200 µL of 0.1 mM As(III) within 24 h), predominant secretion of IAA (12.45 mg L-1) and siderophores (siderophore unit: 88%). Strain m318 showed significant chemotactic response and high colonization efficiency to P. vittata roots, which suggested its wide host affinity. Interestingly, inoculation with strain m318 enhanced the proportion of aioA-like genes in the rhizosphere. And in field trials, inoculation with strain m318 increased As accumulation in P. vittata by 48-146% and in P. multifida by 42-233%. Post-transplantation inoculations also increased As accumulation in both ferns. The abilities of the isolated multifunctional strain m318 and the increase in the rhizosphere microbial aioA-like genes are thus speculated to be involved in As transformation in the rhizospheres and roots of P. vittata and P. multifida.


Assuntos
Gleiquênias , Arsênio , Biodegradação Ambiental , Rizosfera , Poluentes do Solo
15.
Ecotoxicol Environ Saf ; 190: 110075, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881405

RESUMO

As a toxic and carcinogenic metalloid, arsenic has posed serious threat to human health. Phytoremediation has emerged as a promising approach to circumvent this problem. Arsenic uptake by Pteris vittata is largely determined by arsenic speciation and mainly occurs via roots; thus, rhizospheric microbial activities may play a key role in arsenic accumulation. The aim of this study was to investigate the potential of arsenic resistant rhizobacteria to enhance arsenic phytoextraction. A total of 49 cultivable rhizobacteria were isolated from the arsenic hyperaccumulating fern, Pteris vittata, and subjected to an initial analysis to identify potentially useful traits for arsenic phytoextraction, such as arsenic resistance and the presence of aioA(aroA)-like (arsenite oxidase-like) gene. Isolated strain r507, named as Cupriavidus basilensis strain r507, was a selected candidate for its outstanding arsenic tolerance, rapid arsenite oxidation ability, and strong colonization to P. vittata. Strain r507 was used in co-cultivation trials with P. vittata in the field for six months. Results showed that the inoculation with strain r507 potentiated As accumulation of P. vittata up to 171%. Molecular analysis confirmed that the inoculation increased the abundance of aioA-like genes in the rhizosphere, which might have facilitated arsenite oxidation and absorption. The findings of this study suggested the feasibility of co-cultivating hyperaccumulators with facilitator bacteria for practical arsenic phytoremediation.


Assuntos
Arsênio/metabolismo , Cupriavidus/metabolismo , Pteris/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Transporte Biológico , Oxirredução , Raízes de Plantas/metabolismo , Rizosfera
16.
Microorganisms ; 8(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881778

RESUMO

Biodegradation of 1,4-dioxane, a water contaminant of emerging concern, has drawn substantial attention over the last two decades. A number of dioxane-degraders have been identified, though many of them are unable to metabolically utilize 1,4-dioxane. Moreover, it is considered more preferable to use microbial consortia rather than the pure strains, especially in conventional bioreactors for industrial wastewater treatment. In the present study, a stable 1,4-dioxane-degrading microbial consortium was enriched, namely 112, from industrial wastewater by nitrate mineral salt medium (NMSM). The consortium 112 is capable of utilizing 1,4-dioxane as a sole carbon and energy source, and can completely degrade 1,4-dioxane up to 100 mg/l. From the consortium 112, two 1,4-dioxane-degrading bacterial strains were isolated and identified, in which the Variovorax sp. TS13 was found to be a novel 1,4-dioxane-degrader that can utilize 100 mg/l of 1,4-dioxane. The efficacy of the consortium 112 was increased significantly when we cultured the consortium with mineral salt medium (MSM). The new consortium, N112, could utilize 1,4-dioxane at a rate of 1.67 mg/l·h. The results of the ribosomal RNA intergenic spacer analysis (RISA) depicted that changes in the microbial community structure of consortium 112 was the reason behind the improved degradation efficiency of consortium N112, which was exhibited as a stable and effective microbial consortium with a high potential for bioremediation of the dioxane-impacted sites and contaminated industrial wastewater.

17.
Microorganisms ; 7(11)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744069

RESUMO

A novel TnMERI1-like transposon designated as TnMARS1 was identified from mercury resistant Bacilli isolated from Minamata Bay sediment. Two adjacent ars operon-like gene clusters, ars1 and ars2, flanked by a pair of 78-bp inverted repeat sequences, which resulted in a 13.8-kbp transposon-like fragment, were found to be sandwiched between two transposable genes of the TnMERI1-like transposon of a mercury resistant bacterium, Bacillus sp. MB24. The presence of a single transcription start site in each cluster determined by 5'-RACE suggested that both are operons. Quantitative real time RT-PCR showed that the transcription of the arsR genes contained in each operon was induced by arsenite, while arsR2 responded to arsenite more sensitively and strikingly than arsR1 did. Further, arsenic resistance complementary experiments showed that the ars2 operon conferred arsenate and arsenite resistance to an arsB-knocked out Bacillus host, while the ars1 operon only raised arsenite resistance slightly. This transposon nested in TnMARS1 was designated as TnARS1. Multi-gene cluster blast against bacteria and Bacilli whole genome sequence databases suggested that TnMARS1 is the first case of a TnMERI1-like transposon combined with an arsenic resistance transposon. The findings of this study suggested that TnMERI1-like transposons could recruit other mobile elements into its genetic structure, and subsequently cause horizontal dissemination of both mercury and arsenic resistances among Bacilli in Minamata Bay.

18.
Chemosphere ; 234: 789-795, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31247488

RESUMO

Grasses are advantageous in the removal of polycyclic aromatic hydrocarbons (PAHs) in soil because of their fibrous root, high tolerance to environmental stress, and low nutritional requirements. In this study, a pot experiment was conducted to test the ability of four grasses to remove PAHs in the soil, and to investigate the corresponding bacterial community shift in the rhizosphere of each. Sudangrass achieved the maximum removal of PAHs at 98% dissipation rate after 20 days. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and next-generation sequencing revealed that sudangrass specially enriched the growth of a known PAHs degrader, Sphingomonadales, regardless of the presence or absence of PAHs in the soil. Moreover, the gene copy numbers of PAHs catabolic genes, PAH-RHDα and nidA, as measured by real time-PCR (RT-PCR) were highest in the soil planted with sudangrass. Overall, this study suggested that sudangrass further enhanced the dissipation of PAHs by enriching Sphingomonadales in its rhizosphere.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Rizosfera , Sorghum/microbiologia , Bactérias/isolamento & purificação , Bactérias/metabolismo , Poaceae/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Sphingomonadaceae/crescimento & desenvolvimento , Sphingomonadaceae/metabolismo
19.
Chemosphere ; 227: 638-646, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31015084

RESUMO

Toxic metals/metalloid contaminations of estuarine sediments due to compromised tributaries arouse significant interest in studying bacterial community that triggers natural attenuation processes. Geo-accumulation index (Igeo), contamination factor (CF), pollution load index (PLI), and Hakanson potential ecological risk index (RI) as a sum of risk factors (Er) were used to quantify toxic metal/metalloid-pollution status of Lagos Lagoon (2W) and 'Iya-Alaro' tributary (4W) sediments in comparison with pristine 'Lekki Conservation Centre' sediment (L1-B). Bacteriology of the ecosystems was based on culture-independent analyses using pyrosequencing. 2W and 4W were extremely contaminated with mercury (Igeo > 7), whereas, cadmium contamination was only observed in 4W. The two ecosystems were polluted with toxic metal based on PLI, where mercury (Er = 2900 and 1900 for 4W and 2W, respectively) posed very high ecological risks. Molecular fingerprinting revealed that Proteobacteria, Firmicutes, and Acidobacteria predominately contributed the 20 most abundant genera in the two ecosystems. The 240 and 310 species present in 2W and 4W, respectively, but absent in L1-B, thrive under the metal concentrations in the polluted hydrosphere. Whereas, the 58,000 species missing in 2W and 4W but found in L1-B would serve as indicators for systems impacted with metal eco-toxicity. Despite toxic metal pollution of the ecosystems understudied, bacterial communities play vital roles in self-recovery processes occurring in the hydrosphere.


Assuntos
Monitoramento Ambiental/métodos , Estuários , Sedimentos Geológicos/microbiologia , Metais Pesados/análise , Microbiota , Poluentes Químicos da Água/análise , Acidobacteria/isolamento & purificação , Ecossistema , Firmicutes/isolamento & purificação , Sedimentos Geológicos/química , Nigéria , Proteobactérias/isolamento & purificação
20.
Int J Phytoremediation ; 20(12): 1187-1193, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31274027

RESUMO

The main threats to the environment from heavy metals are associated with arsenic (As), lead (Pb) and cadmium (Cd). In this study, the potential of Pteris multifida for removing As, Pb and Cd from hydroponic solution and pot soil was evaluated for the first time. Short-term (5 day) experiments were conducted to assess phytofiltration efficiency of temperate zone fern P. multifida and to compare it with mostly studied tropical zone fern P. vittata. Within 5 days, P. multifida accumulated 33% of As(III), whereas P. vittata could not accumulate that most toxic arsenic species As(III) at all. Long-term hydroponic results showed that 90% of Pb, 50% of As and 36% of Cd were removed by P. multifida. Concentration of As in the frond (22 mg/kg dw) was comparatively higher than other parts of plant and significantly higher concentration of Cd and Pb were stored in root and rhizome. Pot soil experiment of P multifida confirmed the comparative uptake and translocation of As(V), Pb and Cd from soil. Therefore, from the assessment of heavy metal accumulation capacity, translocation and healthy survival for long time, P. multifida was identified as an excellent species for the treatment of multi-metal contaminated water and soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA