Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(7): e0023724, 2024 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-38940598

RESUMO

Responding to changes in oxygen levels is critical for aerobic microbes. In Caulobacter crescentus, low oxygen is sensed by the FixL-FixJ two-component system which induces multiple genes, including those involved in heme biosynthesis, to accommodate microaerobic conditions. The FixLJ inhibitor FixT is also induced under low oxygen conditions and is degraded by the Lon protease when the oxygen levels are sufficient, which together provides negative feedback proposed to adjust FixLJ signaling thresholds during changing conditions. Here, we address whether degradation of FixT by the Lon protease contributes to phenotypic defects associated with loss of Lon. We find that ∆lon strains are deficient in FixLJ-dependent heme biosynthesis, consistent with elevated FixT levels as deletion of fixT suppresses this defect. Transcriptomics validate this result as, along with heme biosynthesis, there is diminished expression of many FixL-activated genes in ∆lon. However, stabilization of FixT in ∆lon strains does not contribute to restoring any known Lon-related fitness defect, such as cell morphology defects or stress sensitivity. In fact, cells lacking both FixT and Lon are compromised in viability during growth in standard aerobic conditions. Our work highlights the complexity of protease-dependent regulation of transcription factors and explains the molecular basis of defective heme accumulation in Lon-deficient Caulobacter. IMPORTANCE: The Lon protease shapes protein quality control, signaling pathways, and stress responses in many bacteria species. Loss of Lon often results in multiple phenotypic consequences. In this work, we found a connection between the Lon protease and deficiencies in heme accumulation that then led to our finding of a global change in gene expression due in part to degradation of a regulator of the hypoxic response. However, loss of degradation of this regulator did not explain other phenotypes associated with Lon deficiencies demonstrating the complex and multiple pathways that this highly conserved protease can impact.


Assuntos
Proteínas de Bactérias , Caulobacter crescentus , Regulação Bacteriana da Expressão Gênica , Protease La , Proteólise , Transdução de Sinais , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Caulobacter crescentus/enzimologia , Caulobacter crescentus/crescimento & desenvolvimento , Protease La/metabolismo , Protease La/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Heme/metabolismo , Histidina Quinase
2.
J Bacteriol ; 206(6): e0008324, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38722176

RESUMO

Bacteria rely on DNA methylation for restriction-modification systems and epigenetic control of gene expression. Here, we use direct detection of methylated bases by nanopore sequencing to monitor global DNA methylation in Alphaproteobacteria, where use of this technique has not yet been reported. One representative of this order, Caulobacter crescentus, relies on DNA methylation to control cell cycle progression, but it is unclear whether other members of this order, such as Brucella abortus, depend on the same systems. We addressed these questions by first measuring CcrM-dependent DNA methylation in Caulobacter and showing excellent correlation between nanopore-based detection and previously published results. We then directly measure the impact of Lon-mediated CcrM degradation on the epigenome, verifying that loss of Lon results in pervasive methylation. We also show that the AlkB demethylase has no global impact on DNA methylation during normal growth. Next, we report on the global DNA methylation in B. abortus for the first time and find that CcrM-dependent methylation is reliant on Lon but impacts the two chromosomes differently. Finally, we explore the impact of the MucR transcription factor, known to compete with CcrM methylation, on the Brucella methylome and share the results with a publicly available visualization package. Our work demonstrates the utility of nanopore-based sequencing for epigenome measurements in Alphaproteobacteria and reveals new features of CcrM-dependent methylation in a zoonotic pathogen.IMPORTANCEDNA methylation plays an important role in bacteria, maintaining genome integrity and regulating gene expression. We used nanopore sequencing to directly measure methylated bases in Caulobacter crescentus and Brucella abortus. In Caulobacter, we showed that stabilization of the CcrM methyltransferase upon loss of the Lon protease results in prolific methylation and discovered that the putative methylase AlkB is unlikely to have a global physiological effect. We measured genome-wide methylation in Brucella for the first time, revealing a similar role for CcrM in cell-cycle methylation but a more complex regulation by the Lon protease than in Caulobacter. Finally, we show how the virulence factor MucR impacts DNA methylation patterns in Brucella.


Assuntos
Proteínas de Bactérias , Brucella abortus , Caulobacter crescentus , Metilação de DNA , Regulação Bacteriana da Expressão Gênica , Sequenciamento por Nanoporos , Brucella abortus/genética , Brucella abortus/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Sequenciamento por Nanoporos/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)
3.
PNAS Nexus ; 3(4): pgae154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38650860

RESUMO

In response to nutrient deprivation, bacteria activate a conserved stress response pathway called the stringent response (SR). During SR activation in Caulobacter crescentus, SpoT synthesizes the secondary messengers guanosine 5'-diphosphate 3'-diphosphate and guanosine 5'-triphosphate 3'-diphosphate (collectively known as (p)ppGpp), which affect transcription by binding RNA polymerase (RNAP) to down-regulate anabolic genes. (p)ppGpp also impacts the expression of anabolic genes by controlling the levels and activities of their transcriptional regulators. In Caulobacter, a major regulator of anabolic genes is the transcription factor CdnL. If and how CdnL is controlled during the SR and why that might be functionally important are unclear. In this study, we show that CdnL is down-regulated posttranslationally during starvation in a manner dependent on SpoT and the ClpXP protease. Artificial stabilization of CdnL during starvation causes misregulation of ribosomal and metabolic genes. Functionally, we demonstrate that the combined action of SR transcriptional regulators and CdnL clearance allows for rapid adaptation to nutrient repletion. Moreover, cells that are unable to clear CdnL during starvation are outcompeted by wild-type cells when subjected to nutrient fluctuations. We hypothesize that clearance of CdnL during the SR, in conjunction with direct binding of (p)ppGpp and DksA to RNAP, is critical for altering the transcriptome in order to permit cell survival during nutrient stress.

4.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464212

RESUMO

Every protein progresses through a natural lifecycle from birth to maturation to death; this process is coordinated by the protein homeostasis system. Environmental or physiological conditions trigger pathways that maintain the homeostasis of the proteome. An open question is how these pathways are modulated to respond to the many stresses that an organism encounters during its lifetime. To address this question, we tested how the fitness landscape changes in response to environmental and genetic perturbations using directed and massively parallel transposon mutagenesis in Caulobacter crescentus. We developed a general computational pipeline for the analysis of gene-by-environment interactions in transposon mutagenesis experiments. This pipeline uses a combination of general linear models (GLMs), statistical knockoffs, and a nonparametric Bayesian statistical model to identify essential genetic network components that are shared across environmental perturbations. This analysis allows us to quantify the similarity of proteotoxic environmental perturbations from the perspective of the fitness landscape. We find that essential genes vary more by genetic background than by environmental conditions, with limited overlap among mutant strains targeting different facets of the protein homeostasis system. We also identified 146 unique fitness determinants across different strains, with 19 genes common to at least two strains, showing varying resilience to proteotoxic stresses. Experiments exposing cells to a combination of genetic perturbations and dual environmental stressors show that perturbations that are quantitatively dissimilar from the perspective of the fitness landscape are likely to have a synergistic effect on the growth defect.

5.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464217

RESUMO

Bacteria rely on DNA methylation for restriction-modification systems and epigenetic control of gene expression. Here, we use direct detection of methylated bases by nanopore sequencing to monitor global DNA methylation in Alphaproteobacteria, where use of this technique has not yet been reported. One representative of this order, Caulobacter crescentus, relies on DNA methylation to control cell cycle progression, but it is unclear whether other members of this order, such as Brucella abortus, depend on the same systems. We addressed these questions by first measuring CcrM-dependent DNA methylation in Caulobacter and show excellent correlation between nanopore-based detection and previously published results. We then directly measure the impact of Lon-mediated CcrM degradation on the epigenome, verifying that loss of Lon results in pervasive methylation. We also show that the AlkB demethylase has no global impact on DNA methylation during normal growth. Next, we report on the global DNA methylation in Brucella abortus for the first time and find that CcrM-dependent methylation is reliant on Lon but impacts the two chromosomes differently. Finally, we explore the impact of the MucR transcription factor, known to compete with CcrM methylation, on the Brucella methylome and share the results with a publicly available visualization package. Our work demonstrates the utility of nanopore-based sequencing for epigenome measurements in Alphaproteobacteria and reveals new features of CcrM-dependent methylation in a zoonotic pathogen.

6.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370668

RESUMO

Responding to changes in oxygen levels is critical for aerobic microbes. In Caulobacter crescentus, low oxygen is sensed by the FixL-FixJ two-component system which induces multiple genes, including heme biosynthesis, to accommodate microaerobic conditions. The FixLJ inhibitor FixT is also induced under low oxygen conditions and is degraded by the Lon protease, which together provides negative feedback proposed to adjust FixLJ signaling thresholds during changing conditions. Here, we address if the degradation of FixT by the Lon protease contributes to phenotypic defects associated with loss of Lon. We find that ∆lon strains are deficient in FixLJ-dependent heme biosynthesis, consistent with elevated FixT levels as deletion of fixT suppresses this defect. Transcriptomics validate this result as there is diminished expression of many FixLJ-activated genes in ∆lon. However, no physiological changes in response to microaerobic conditions occurred upon loss of Lon, suggesting that FixT dynamics are not a major contributor to fitness in oxygen limiting conditions. Similarly, stabilization of FixT in ∆lon strains does not contribute to any known Lon-related fitness defect, such as cell morphology defects or stress sensitivity. In fact, cells lacking both FixT and Lon are compromised in viability during adaptation to long term aerobic growth. Our work highlights the complexity of protease-dependent regulation of transcription factors and explains the molecular basis of defective heme accumulation in Lon-deficient Caulobacter.

7.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38187569

RESUMO

In response to nutrient deprivation, bacteria activate a conserved stress response pathway called the stringent response (SR). During SR activation in Caulobacter crescentus, SpoT synthesizes the secondary messengers (p)ppGpp, which affect transcription by binding RNA polymerase to downregulate anabolic genes. (p)ppGpp also impacts expression of anabolic genes by controlling the levels and activities of their transcriptional regulators. In Caulobacter, a major regulator of anabolic genes is the transcription factor CdnL. If and how CdnL is controlled during the SR and why that might be functionally important is unclear. Here, we show that CdnL is downregulated post-translationally during starvation in a manner dependent on SpoT and the ClpXP protease. Inappropriate stabilization of CdnL during starvation causes misregulation of ribosomal and metabolic genes. Functionally, we demonstrate that the combined action of SR transcriptional regulators and CdnL clearance allows for rapid adaptation to nutrient repletion. Moreover, cells that are unable to clear CdnL during starvation are outcompeted by wild-type cells when subjected to nutrient fluctuations. We hypothesize that clearance of CdnL during the SR, in conjunction with direct binding of (p)ppGpp and DksA to RNAP, is critical for altering the transcriptome in order to permit cell survival during nutrient stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA